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ABSTRACT

A linearized formulation for the ungteady forces experienced by supercavitating bodies is developed in terms of added mass
and danping coefficients.  The formulation is general, but is applied here usng an axisymmetric base flow. BExpressions
for the added mass, damping and restoring tensors are derived in a form suitable for incorporation in a numerical “flight”
smulation tool for supercavitating vehides. The expressions are evaluated numerically usng a low-order boundary
dement method for both the axisymmetric base flow and the ungteady perturbation. Disk and conical cavitating bodies are

investigated.

NOMENCLATURE

d

Cavitator diameter

Function in space describing the body/cavity
surface

G Greensfunction

i J-1

k Dimensionlessfrequency, k :W%

0

n Coordinate direction norma to the body and
cavity surface

p Pressure

S Surface area

S Arclength, and coordinate direction tangent to
the body/cavity surface

t Time

U, Steady body velocity

f Unsteady disturbance potentias

F Total velocity potentia

ro Fluid density

s Cavitation Number s =2(p, - p,)/r U2

w Disturbancefrequency

X Boundary displacement vector, x = x|

Subscripts:

0 Indicates steedy basisflow (eg., F )

BW Refers to the wetted body surface for the
nomina steedy conditions (eg., S

C.c Indicates acavity parameter (9., S p)

0] Indices indicating the direction of unsteady
motion (e.g.,i=1for surge, 2 for sway, €tc)

J Indicatesare-entrant jet parameter (eg., S)

It is found that the added mass in surge and heave can be negative for small values of the disturbance
frequency. The physical interpretation of this phenomenon is provided.

INTRODUCTION

Current interest in the development of supercavitating
high-speed vehides has led to the development of
guidance and control agorithms for supercaviteting bodies
(Kirschner, et a, 2001). Unfortunately, incorporation of
added mass effects in the equations of motion of
supercavitating bodies is complicated by the fact that the
shape and extent of the cavity boundary depends on the
history of the body motion. Unlike fully-wetted flows, the
added mass force experienced by supercavitating bodies
depends on the history of the body motion

In this work, we seek to quantify the unsteady forces
experienced by supercavitating bodies in an irrotationa
flow of an inviscid and incompressble fluid. By defining
an added mass tensor for supercavitating vehicles, we hope
to find a smple and accurste approach to including
unsteady inertial forces in their equations of motion. Our
goproach is to formulate the ungteady problem as a
perturbation of a steady bass flow, and to solve for the
ungteady flow in the frequency domain. This gpproach
bears great sSmilarity to that taken in previous works in
solving the problem of ship motions in a seaway. For that
reason, the formulation presented here follows two semina
works on that subject: Timman and Newman (1962) and
Ogilvie and Tuck (1969).

1. PROBLEM STATEMENT

Consider a supercavitating body, such as the one shown in
figure 1, moving with steady velocity U, in the negative x
direction. We seek expressons for the added maess and
damping forces experienced by the body in response to
unsteady motions, which will be assumed to be smdl
relaive to the forward speed. We will formulate the
boundary vaue problem usng a Catedan coordinate



system X = (x,y,z) fixed on the vehide. The fluid is
assumed to be inviscid and incompressble and the flow
irrotational, so that the velocity fidd may be written as the
gradient of a potentid, ®(X,t), which saisfies Laplace's
eguition:

V3P =0. @)
The tota fluid vedocity is described as an  ungeady

perturbation superposed on a deady mean  flow.
Accordingly, the velocity potential is decomposed into a

deady mean velocity potentidl and an  unsteady
perturbation potential:
(X, t)=3,(X)+F(X 1) . )

y
L» X Uoo Cavity surface

Caviator il

Fgure 1. Notiona sketch of asupercavitating vehide.

1.1 Kinematic Boundary Condition

If the body and cavity surfaces are represented by the
function F(X,t), then the exact kinematic boundary
condition to be satisfied on the surfaceis:

DF OF
—=—+M%+T)- VF =0.
or o T Bt G

The postion of the surface may be defined as the sum of

the steady mean position, X, =(%,,Y,, %) ad a smdl
unsteady displacement:

X =% +X (%, t) - @

Using this definition, the time derivative and gradient of F
may be written asfdlows:

OF_ X gF
ot o
.’*8)2 c(?)Z "8)?
VF=V,F-i—V F—j—V,F-k—V F
X 6)(0 X Jayo X 820 %

where the subscript %" denotes that the gradient operator
is to be evduaed on the mean postion of the body, with

X=%,- The unit vectors in the x,,y, and z, coordinate
directions are 1, andk, respectively. Subtituting these

expressons in  equaion (3), the kinematic boundary
condition becomes:
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X
—o VP V(@ + )
VF i v iy kv Fl-0
X0 8)(0 Xo ayo X0 620 X

®

Equation (5 applies on the exact body suface F(Xt).
Following Timman and Newman (1962), this expresson
may be linearized under the assumption that the unsteady
displacement amplitudes, the perturbation potentid and its
spatid derivatives are dl samdl. Using a Taylor expansion
for the velocity field

V(& +F)=V & +X-V (V, 8)+V, F+OKx?) (6)

we may recast equation (5) asfollows:

Ox -

V(Y8 XV, (V, )+, F):
VP2 v i % vrkZ v @
X o 9z,

+0O(x*)=0.

Rearanging terms, the unsteady components of equation
(7) become:

ox
V. FV,F==V F+
X % ot X (8)

(V,20-V,X —X-V, (V, 8y)]- V, F -+ O(¢)

Noting that V, Fis norma to the body/cavity surface,
equation (8) reducesto

oF  ox . - - -
C T (v, VXXV, (V)R (9
on ot ’ ’ o

Equation (9) is the linearized kinematic boundary
condition which, consstent with the linearization, can be
gpplied on the mean body/cavity surface.

We now condder only the wetted portion of the
boundary and assume that its motion is associated with
rigd-body motion of the vehicle The displacement
amplitude may be expressed as the sum of a rigid body

trandation, )?T , and rotation, )?R :
X = % + X X Xy - (10)
Decomposing the perturbation potentid into a sum of

components proportiona  to  complex harmonic  displace-
ment amplitudes,



F=z3,%)e" (11

where summation over repeated indices is implied and
where the magnitudes of the complex amplitudes are

2, 2,2.)8" =X
(1 2 3)- ;I' (12)
(Z4 vZSIZG)eIWI = Xgs
and substituting equation (11) in equetion (9) yields
a3 (%) .
é—n": iwn, +m, 13

where the generdized normd and so-cdled “m-terms’ are
given by (Ogilvie and Tuck, 1969) as

n, n,n,) = A
N, N, Ng) = X, x

(

(

(m, m,m) =—A-V, (V, (%))

(M, my,my) = —A-V, (% x V(%))

(19

Equation (13) is the linearized kinematic boundary
condition to be applied on the wetted portion of the body
for eech mode of oscillation, j=1,..,6 (seefigure 2).

1

Reentrant
~ jetface, S

Cavity, S,

3
z‘se\d]/%”
5
| A
™~ Cavitator, S,y

Figue2 Cut-avay <ketch of a supercavitaing cone
showing the various surface definitions.

1.2 Dynamic Boundary Condition
To derive the linearized dynamic boundary condition, we
start with the following form of Bernoulli’ s equation:

OB (X, t B B
ro gt )+%roV<I>(><,t)'V<I>(x,t)=(pwfpc)+%roU§

(19

where p_and p are the pressures a infinity and in the
cavity, respectively, and where gravity effects are ignored.
Insarting the decomposition of the totd potentid given in
equation (2) and the Taylor expanson of its gradient from
equation (6), thisbecomes:
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L ITCot)
ot

(Vo 26() +XoV (V2 (%) + Y, F )y
{ V0 80(5%) XV, (T, @6(5)) + ¥, F o)

—U2(L+s)

where the cavitation number is defined asfollows:

Keeping only terms linear in x , equation (16) reducesto

FF (%)
2— 07
ot +
Vo 8o (%)e V, 20(%) +2V, 8o (%)e V, F(%,,1)  (17)

+ 2V, By (%)X oV, (vxoq%(zo))) =UZ(1+s)

The steady potentid, @,(X,), is assumed to satisfy the
steady dynamic boundary condition:

V.20 (%)V, o (%) =U; (1+s) onthecavity (18)

so that equation (17) reducesto

OF(%.1) o s
A SUNEAR R {E) 0

+V,Ber(XeV,, (V,2,(%,))) =0

The last term on the left-handside of equation (19) may be
evauated asfollows.

Y, B (X, (vxoq%)) —Xe(V,, (V, @)V, B,
=1x+V, (V, 2,V ,B,) (20)
=0

This term vanishes on & because the lagt bracketed term
of (20) is congtant, according to equation (18).

Subgtituting  the decomposition of the perturbation
potentia, equation (11), in equation (19 and making use

of equation (20) results in the following linearized
dynamic boundary condition:

g (%) + V&, (%) Vi, (%)= 0. (1)

Equation (21) will be applied on the steady mean cavity
surface, &, for dl six degrees of freedom (j=1,... ,6).



1.3 Cavity Termination

The need for a termination modd arises from the
incondsency inherent in  forcing a condant-pressure
streamline to end at a stagnation point. In this effort, a re
entrant jet cavity termination modd is employed, as shown
in figure 2. This termination model was originaly devised
by Efros (1946) and Kreisd (1946), and is motivated by
experimental  observation Details of the numericd
implementation in the boundary element method may be
found in Uhlman (2001).

14 Boundary Integral Equation
The perturbation potential satisfies Green’ sthird identity:

2pF(X t) +
N I B
f?flf(y,t)%@(x,y))—G(i,V)%(f(v,t)) dS=0
(22
where the Green’sfunction, G, isgiven by
G(%,3) = = 23
X9l

and where the fidd point, X, lies on the boundary.
Subdtituting the decomposition (11) and noting that the
complex amplitudes, z;, have no spatid deperdence, we

find that each complex potentia, J |, stisfies

£l (9 22ED 2,5

S

(y)dS 0o @

The boundary conditions to be sdtidfied are the kinematic
boundary condition (equation (13)), which defines the

source digtribution 9, /E)n on the wetted portion of the
body, and the dynamic boundary condition (eguation (21))
which may be used to define the dipole digtribution j, on

the cavity.  Insarting the kinematic boundary condition in
(24) and rearranging terms 0 that the known quantities are
on the right-handsde, we artrive a the following
expression:

‘HG(R D ys. s B0
@
Sc+Sy

‘HG(X ) 4s

2pj ; + qj i(¥) G(%,y)dS

(N)—— (29
S:+SJ

= a@fiwn, +mj}GdS
SBW
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Here, the wetted body surface is Sy, the cavity surface is
S and the jet face is S, as shown in figure 2. Note that the
potential on the cavity and je&¢ may be determined by
numericdly integraing equation (21). This will be
described in more detal in the context of an axisymmetric
basis flow in Sedtion 2

1.5 Hydrodynamic Coefficients
Once the source and dipole didributions have been

computed, the forces may be found by integrating the
pressure over the wetted surface
A= [ [ pones. (26)
$®

In (26), S;(t) is the exact surface of the body. The
unsteady pressureon S;(t) may bewritten

p()?r t) =—I %(f(;(, t))
—% oV (Qo(X) + (X, 1))V (D0 (X) +F(X 1))

@7

If we again introduce the intermediate coordinate system,
% » 8 in (4), equation (27) may be linearized for small x
asfollows:

p(%.t) = % %(f(% 1))~ FoVy, Bo(Fo)e ¥ F (o)

—LrgxXeV, (V8o (%)* V5, 8o (%))
29)

For the remainder of this paper, there will be no need
to distinguish between the coordinates Xand X,. It will be
implicitly assumed that dl quantities are defined reldive to
the steady mean coordinate system, X,

Inserting the decompostion (11) in (28) and the
resulting expresson in (26) then yidds the following
equation for the force as a function of frequency (Nakos
and Sdavounos, 1990):

F(w)= Re{eiWI [xj (Wza1.j —iwh, —c; )}} (29)

where
Re{ff iwj,; + ]r]dS’ (30)
r L. 09,07,
S =—%1m +—2—1IndS 31
ad 18<I> 0d,
¢ =r,Re ] dS’ 32
' {g X, 2 8xk O,




In equation (29), the force is written as a sum of added
mass (a;), damping () and restoring force (G;) tensors.
2. NUMERICAL IMPLEMENTATION FOR AN
AXISYMMETRIC BASE FLOW
To this point, we have formulated the problem in terms of
a genera deady basis flow. To demondrae the method,
we now define our steady bass flow to be tha of an
axisymmetric  cavitator with a reentrant jet cavity
termination, a shown in figure 2 The seady
axisymmetric flow is computed numericdly via a low-
order boundary dement method (Uhiman, 2001). In the
numerica solution of the bass flow, the cavity length is
asumed to be known, and the cavitation number is
determined as part of the solution. An iterative method is
used to determine the cavity shape that satisfies the exact
kinematic and dynamic boundary conditions.

2.1 Dynamic Boundary Condition
Noting that for an axisymmetric base problem we have

vo, 2oy firssns (33

aJs

where s and Sare the adength and unit tangent vector
dong a meridian, we find that the dynamic boundary
condition on & (equation (21)) becomes.

a3,
iwj, +U, 1+sé:0 onSs. (39

Equetion (34) is a first order ordinary differentid equation
forj , ad may beintegrated to yield

§,=de" (39)
where
g(s—s) = (s—s,) (36)
ZV1+s
and where j is the vaue of j & s=s ad sjisthe

aclength & the tralling edge of the body. The dynamic
boundary condition on the jet cross section is

o®, 93
iwjj+8n°$:OonSJ. 37

Noting that, on the jet cross section,

0%, /on=Ug1+s

equation (37) becomes
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J iw i -
JJ __ jme 9(s,-9) (38)
on U vl+s

where S, is the arclength dong the cavity to the edge of
the jet cross section and where we've assumed that
aj , [0s iszero onthejet face:

2.2 Boundary Integral Equation
On the wetted part of the body, Sy, Green's third identity
becomes:

N\ i
20+ 0O il—ndsﬁ O#Ydsd?
%

SBN

9(4-9)
v IV yg ke~ OYd

In d-/1+s

_) —_——

O
*S

= o{iwnj +m} Yds¢
Sw

(39)

and on the cavity

Y
2pj e+ ﬂ—ds¢- o—Yds¢

Sw

L -ig($- %) U
3 u
-ig(st sg) ﬂ ds¢_|_ll(e— éYd { (40)
— fin dvlts .

= (‘){iwnJ + ml} Y ds¢

Sw

where s Sc ad s; ae the adength domains on the
wetted body, cavity and reentrant jet face. s; is the
aclength a the edge of the jet. d is the body diameter a
the cavity detachment location, and Kk is the dimensionless
frequency, k:Wd/UO. The integrds in arclength dong
the meridian ae computed by the boundary dement

method, wherein the source and dipole didributions
(] yand J./'ﬂn, respectively) are assumed to be constant

over each adength segment (or pand).  The induced
potentials, Y ad ﬂY/ﬂn, ae then integrated over esch

pand usng Guassan quadrature  Following Hess and
Smith (1966) and Uhlman (2001), the source potentia

P
by

1
Y(X.y)= Q-——rdq

—plX - yl
and the dipole potentia
M k)= o B2 S
i " Yn, 8K - ylo



may be written in terms of complete dliptic integras of the
firsd and second kinds. A cylindrica coordinate system is
used in which r is the radius of the axisymmetric body at

the plane of integration. For further details, see Appendix
A. The Appendix also presents the derivation of modified
source and dipole influence functions for use when there is
a crossflow component to the inflow, as is the case when
the motion includes pitch/yaw and heave/sway.

24 Reaults

In this section, we present added mass and damping results
for the circular disk, conical cavtators with various half-
angles, and a roundnose cavitator. For the present paper,
we consder only surge and heave motions. Results for
pitch osllaions will be presented in a separate pub-
lication.

Figure 3 shows the convergence of the added mass for
a roundnose cavitator in surge with increesng number of
panels. The shape of the cavitator is shown in figure 3a and
the convergence is shown in figure 3b. The tota number
of paneds wused to disretize the boundary is
NBOD+NCAV+NJET, where NBOD is the number of
panels on the cavitator, NCAV is the number of panels
representing the cavity, and NJET is the number of pands
representing the jet face. The steady cavity length is five
cavitator base diameters, correponding to a cavitation
number of s=0.19. The correponding convergence of
the cavitation number isaso shown in the figure.

Figure 4 shows the surge added mass and damping for
the drcular disk as a function of dimensionless frequency.
This result demonstrates that the added mass levels off to a
value close to hdf the theoreticad value for the fully wetted
disk a high frequency. A surprisng agpect of the result
presented in figure 4 is the fact that the added mass takes
on negaive vaues for a range of frequendes (k < 3). This
result will be discussed in Section 2.5.

Figure 5 shows the added mass and damping for
conicd cavitaors with haf-angles of 30°, 45° and 60°, as
wel the results for the circular disk. The steady cavity
length for each caze is L/d=5.0, and the corresponding
cavitetion numbers are 0.183, 0217 0241, and 0.268,
respectively. Note that, smilar to the results for the disk,
the added mass is negative for smal reduced frequencies
However, as the hdf-angle increeses, the levd of the
negetive added mass decresses.  For claity, the added
mass has been multiplied by theratio k?/1+ 1€ in figure 5.

Figure 6 shows the added mass and damping for the
sane st of oonicd cavitators undergoing  heave
oxillations. As with surge, the added mass @pears to
asymptote to a condant a high reduced frequency, and is
negaive a low reduced frequencies The megnitude of
both the added mass and damping coefficients are much
lower for heave than for surge.

2.5 Discussion

As shown in figure 4, the added mass in surge can take on
negative vadues over a range of reduced frequencies This
result is surprisng, since it implies that the added mass
force can reinforce the motion of the body. The result is
adso important, snce the occurrence of negative added
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mass can effect the stability of a high speed supercavitaing
vehide

The physicd explangtion of the phenomenon is as
follows. When the cavitator moves in oscillaory surge,
vorticity is shed at the base of the cavitator with every half-
cycle of motion. The vorticity is then advected dong the
cavity boundary and out of the fluid domain via the
reentrant jet. At any given moment, each eement of shed
vorticity on the cavity boundary induces an axid velocity
a the cavitator in a direction that ether opposes or
coincides with the direction of motion of the cavitator.
The axid velocity induced by the vorticity shed during the
current half-cycle of motion coincides with the direction of
motion.  For low frequency motions, the most recent
edement of shed vorticity contributes most of the induced
velocity. Therefore, the net induced velocity contributes to
the accderation of the fluid, resulting in a negative added
mass. However, for high frequency motions, the
waveength of the sinusoiddly varying vorticity is much
sndler, 0 tha the net induced axia velocity over the
cavitator is gredtly reduced. At high reduced frequencies
there is almost no net induced axid velocity and the added
mass is positive as expected.

It should be noted tha an adogous phenomenon
occurs  for  fully-wetted  hydrofoils  undergoing  small
ocillatory heave motions.  In that case, the shed vorticity
is advected dong the wake of the foil and induces a net
vertical velocity in the direction of motion. This behavior
is evident in the classicd Theodorsen linear theory for
ungteady hydrofoil motion (see eg., Newman, 1986). See
Appendix C for more discusson of the Theodorsen
problem.

CONCLUSIONS AND FUTURE WORK
A mehod for computing the force coefficients for
supercaviteting bodies undergoing oscillatory motion  has
been described. The method assumes smal harmonic
oxillations and solves a linearized boundary vaue
problem in the frequency domain for smal perturbations to
a deady basis flow. The method has been demonsrated
for unsteady surge and heave of axisymmetric cavitators.
The numericd solution has been found to converge with
increasng number of panels. It has been found thet the
surge added mass of the circular disk asymptotes to
approximately haf the theoreticd vadue for fully wetted
disks a high reduced frequencies. At low reduced
frequencies, however, the added mass is actudly negative.
The physcd explanation for this phenomenon s
discussed

Future work will include demonstrating the method fr
oxillaing pitch motions and assessng the impact of the
ungteady forces on the motions of various notiond
supercavitating geometries. Also, we will examine the
limits of the theory for large amplitude and low frequency
motions.  Findly, we will apply the theory to partialy
cavitating bodies, and to 2D supercavitating hydrofoils.
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APPENDIX A. SOURCE AND DIPOLE POTEN -
TIALSFOR AXISYMMETRIC BODIES

A.1Axial Inflow

Following Uhlman (2001), the source and dipole
potentils may be defined in terms of complete dliptic
integras of the firg and second kinds We use a
cylindricd coordinate system as shown in figure 7, with

X =(x,r,a) ad y =(x,r,q). The Green's function
given by equation (23) can then be written
B 1

N XY +r2 412 2rr cos(a - q)

G

(41)

q

Figure 7. Geometry definitions.

For purdy axid inflow, a may be assumed to be zero
without loss of generdity (Appendix A.2 addresses the
case of a nonzero crossflow component). The potentia
influencea X dueto asourcering isthen

P
Y = 0G(%,9)r dga

P

P rdg
= 0 2 2 2 (42)
.p\/(x-x)+r +r - 2rr cosq
P rdq _ 0 4r
=0 F——=rJ =——=K(K)
AJA-Bcoy | Ja+B
where
p m(f
e =—2 g (g

9@5\ - Beos (f )g"/

Similarly, the dipole strength is
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_IG(RY), 4w T 18
Y, = =22 dg = - e——-Tdq
I _pﬂng\/A- Bcosq g
_Ar(x-x)ER)n 2(x- x)2+(r - 1) 2gK(K)n,
~ (A- BWA+B (A- BVA+B
24X~ X)2 2_ ¢ o2
. g(x- X)*+r -1 YEK)N,
(A- BIWA+B

(44)

whee K(k) ad E(k) ae firda ad second kind
complete dliptic integras, respectively (Abramowitz and
Stegun, 1970). The quantities A, Band Kk are defined as
follows

A=(x-x) +r'+r’

B =2rr 45)

2B
A+B

~
|

In evauating the source potentid when the fied
point and integration point coincide (or nearly coincide),
it's necessary to condder the logarithmic singularity in
the firg kind dliptic integrd, K(k). From Uhlman
(2001), Equation B.7, the logarithmic character of the
source potentia is explicitly:

e 8r 0é

y =& L9
8\/52 +t* o8
(46)

where s=xx and t=r-r. In addition, when the fidd point
lies within the domain of integration, we determine the
dipole sdf-influence using the rdlation

2 2
s +2t (]
- +O(s3,t3)5

t
r 4r?

Y W Y

S =4p - —ds. 4
@_ds, " p OCD o @7
i a]sl
Note tha the right-handside of (47) incdudes the locd
2p contribution to the dipole strength.

A.2 Inflow with a Crossflow Component

When there is a component of the inflow velocity in the
crossflow direction, as is the case for heave or pitch
motions, the axisymmetric solution may ill be applied.
For that case, it can be shown that the source and dipole
srengths on the boundary are proportiona to cosq (Hess
and Smith, 1966). We may then explicitly assume the g
dependence by defining the potentia asfollows

j, =", cosg “8)

If we then dbsorb the cosq in the definition of the source
and dipole potentids, we can show that the origina
boundary integrd equations (equations (39) and (40))



apply, but with j~jin place of j and with new

definitions for the source and dipole potentials:

P r cosqdq

by

OF—
p N A- Bceosq

4r é A
B@J_K(k) \JA+B E(k)H

1 r. \
Y = =rJ(AB)=—gA) -3¢
B

(49)

where

P‘ﬂ£ 1
O &JA- Beosq

9r cosqdq
B cosq @

P cosqdq
O Bosay
, (A - Bcos q)

[A‘]ao - ‘]10]
_Arx-x)é A

" BJA+BEeA- B

r(x - x)¢ =r(x-x)\,
(51)

r(x- x)

EK) - K(k)g

\ 'IT &
o &/A Bcosq
_ Porrcos’q- r’cosq
-p (A' B)%

_r cosqdq

B 2 241

:?J3 - 1] (%)
2E(K)EAA- 1) - 2rir?g

i rr<A- B (A- B)
C2K(K)A- 1)

rr\/A- B

As before, care must be taken in evauating the
source potentid when the fidd point and integration
point coincide (or nearly coincide). Agan extracting the
logarithmic  behevior of the source potentid and
expanding the multiplier in a Taylor series about
(st)=(0,0) yields
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ax 8r 0 t BP+t° s U

=1In - —t +O( €t )z

%\/s +t g8 r 2r’ 9]

®3)

To obtain the dipole salf-influence terms, we note that

1G G_ H

cf - ﬂ axi + ﬂ_ (54)
in n n

where Gy is the cross flow Green's function, G,y is the
Greens function for axid inflow and H is integrable. We
canthenwrite

1G, R
WS = @ - @y ds )
s s 1n
where S is the surface of he complete closed body. The
integrd on the left hand sde can be broken into two

components.  the integra over the sdf-influence pand
and theintegral over the rest of the surface, so that

WG, G TG,
~ds = @ﬂ—ds @—ds a —=ds
s, fin s n s qn
(56)
Furthermore, we can make use of the fact that
‘ﬂGaw
@,—ds =4p (57)
0 that
WG, NG,
@ ds =4p + @,—ds @—ds (58)
s, it

The second term on the right-hand-d9de of (58) can be
written

®_d\11TIH S =nx@)—d‘j1H S+nr@)—d‘j]H S (59
S n S X S r

To evauate this expression, we note that

" T g csqg-1 ¢

o— e d
- 'ﬂxg VA - Bcosq @ oAt
=r(x- 03] - 3] (60)
2(x - X)
= E Kk
rJA_[ k) - K)]



”\ T g cosqg-1 ¢
r cosqdq

'ﬂr g«/A B cosq ﬂ
_rr[‘Js_‘]s]_ r [‘Jsl_‘]so]
_(B+2(A- r))EK) (B-2(A- rH))KK)

JATE NATE

(61)

Specid  trestment is adso required to evduate these
expressions when the fidd point and integration point are
close to one another to ensure that the logarithmic
behavior of the second kind dliptic integrd is accuraidy

captured.

APPENDIX B. COMPUTATION OF THE GENER-
ALIZED NORMAL AND THE M-TERMS
The generdized normal and m -terms take the form

(nl’nz’ns)

(n,n,n)=x" A
(mm)=-aR(E)
(mom.m) =[x R

where X =(x,y,z) = (x rsing,rcosq). In order to
compute these terms for the axisymmetric case we note
that the velocities satisfy the continuity equation

ﬂ_u+ﬂu_"+u_r:0 (6‘3)
ix T r
and the condition of irrotationality
fu,  fu
= (69
fix Aqr

In (63 and (64) weve introduced the three velocity
components

NF, = (u,v,w)=(u,u, sing,u, cosq).

For axisymmetric bodies, we aso note that the unit
normal may be written

A=y 5 (@)
S s
s0 that
X & aeﬂro
= =1 66
o= 31130 Sﬂsz (%)

Employing these relations with the chain rule expansions
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Tu_fufx futr
Is X 9s 9Tr Ts 67)
s ™xXTIs T Ts

we obtain the following expressions:

Tu_Tuix &y LU ﬂroﬂr

™ fsvs Sﬂs r Tsgls

(68)
Tu_ady  u Trofix, fufr
€% 1 TsoTs T s
and
Tu, _ Ty X adu 4 Tx31r
—_——+g—+——+—
Ix s s s r Y s@Ys 69)

ﬂi ﬂu ﬂr aJu qﬂxoﬂx
qr s s g‘ﬂs r safs

The required moations for the axisymmetric base cae ae
surge, heave and pitch. The expressons for the
generdized normd and m-terms are shown in Table 1.
The m-terms are evaluated numericaly with the hep of
equations (68) and (69).

Table 1 Definition of the generalized normal and m-
termsfor j=1, 3and 5.

Generalized M-term
normal, n; Al
m, = -fi>Nu
D
g " H M, Mo
gx'ﬂx "Ire
m, = -AxAwW
% n,=n, = - 1> [u, cosq|
T =n cosq _ ﬂur r O
=-¢h —+n —*cox
8 ix r o
m = - AN (zu- xw)
=- N[ (ru- xu, )cosq]
n =zn - xn . N
L =2, - Xn, é Tu flu u
8| yeon|
E - rnx_ an coyy ﬂX ﬂX H
L u W
+n §u+rﬂ—- xhg
8 qr qr




APPENDIX C. A DISCUSSION OF THE
THEODORSEN HEAVE PROBLEM

C.1Background

In this gppendix, the unsteedy lift force on a heaving flat
plate hydrofoil is expressed in terms of added mass and
damping coefficients as functions of reduced frequency,
using the classcd result of Theodorsen. With the force
formulated in this manner, we can show that the added
mass coefficient is negaive for low reduced frequency,
as it is for the case of the supercavitating bodies
discussed in the main body of this paper.

C.2Formulation
Consider a flat plate hydrofoil whose chord lies on the
segment of the x-axis - 1< x <1 . The lift force acting

on thefoail is given by (see, for ingtance, Newman, 1986)

L=-2ru;c(k)[ikh, - (1+ik)a,]e"

C oo - (1)
-pr 8-w'h, -iwUg, ge
where the heave and pitch functions are given by
h(t) = Reghe™
ghe o -

a(t)=Ref e"f

Thelift for the pure heave problem is then
L=-2ru¢C(k)[ikh]e" +pr, @v’h g ()
where C(k)is the Theodorsen function, r , is the fluid

dendty, and Ug is the freestream velocity. The
Theodorsen function is given by

HO(W
M0+ (W

c (k) = (@)

where H? (k) and 1 (k) are the second kind Hankel
functions of orders zero and one, respectively. If we
then denote the lift by
L=[L,+iL ]e" (74)
wefind that
L, =2pr Ug €C (K)k+2kgh,
L\ =2pr Oug [_ CR (k)k]ho

The reduced frequency isdefined as
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w
k=—.
U

The lift, L, may now be written in terms of the added
mass and damping coefficients (a and b, respectively) as
follows

L=ru*(Kka- ikb)h, (76)
where
A 2 N
a=pa+—C (k)
pgl ’ a )H
b=2pC, (k)

(77)

The added mass and damping coefficients are shown in
Fgure 8. As shown in the figure, the added mass for a
heaving hydrofoil can be negaive for smdl vdues of the
reduced frequency. The physcd explanation of the
phenomenon is similar to that described in Section 2.5
for the supercavitating disk in surge. It should be noted
that, while the added mass is negative and singular as the
reduced frequency tends to zero, the added mass force
actudly is finite and and vanishes a zero reduced
frequency. This is shown in Figure 8, where the added
mass is shown multiplied by the square of the reduced
frequency, which is directly proportiona to the added
meass force.
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Figure 8. Added mass and damping for a heaving flat-
plate hydrofail.
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