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INTRODUCTION
The cavitatiotr t lulrrber. o, is

supercavitating flows:

z(psh _ n,)o = 
ou-'

an inrpoftant pararneter of

( l )

ABSTRACT
The nature of the hydrodynamic forces on an axisytntnetric

cavi tator  wi th a polygonal  generatr ix  is  invest igated us ing
analytical and numerical nrethods. The changes in the forces and
ntoment rvith changes in yaw angle are considered for various
cavitator shapes. The exact solution of the analogous two-

dimensional problem is first deterrnined using flee-strearnline

theory and conformal nrapping, and extended to estimate the
forces on axisymnretric cavitators. The results of a fully-
axisyrnnretric boundary-elenlent colnputation are then compared
wi th the analyt ica l  resul ts .  The condi t ions of  s tat ic  s tabi l i ty  of
the polygonal  cavi tator  are obta ined.  The possib i l i ty  is  d iscussed
of  contro l l ing the cavi ty  d i rnensions by a l ter ing the cavi tator
shape and thus nrodifoing the associated drag coefllcient.

The val id i ty  of  these asynlptot ic  fbnnulae has been
confirnred experirnentally fbr nrodels rvith disk cavitators
moving wi th specds ranging f iorn i00 to 1200 rn/s
(Savchenko,  et  a l ,  1992).

The shape of  nonax isyrnrr ret l ic  cavi tators beconres
i rnpor tant  for  so lv ing dynanr ic  problerns concerning the
stabi l i ty  o l  rect i l inear  mot ion and for  conrput ing the t ra- iectot1,
of  supercavi tat ing bodies.  Account  of  the cavi tator  shape is
especially irnporlant for high speeds of rriotion. sa)'
/ *1000 rn/s.  In  such cases,  evel )  srnal l  d iscrepancies of
workmanship can result in appreciable cross force because of
the h igh veloc i ty  head,  p l , ' '12.  Nonaxisynrnretr ic  cavi tators
are a lso appl ied in  pract ice,  for  exarnple.  to  creatc ' the l i l t
cornpensating for gravify lor horizontal unden^,ater tnotioll i l l
t r roderate speeds (Logvinovich,  I9(r9;  l 'ze i t l in .  e t  a l .  1993).

Effective rnethods of ttuttrerical prediction 01'
axisyrnnretric cavity f lorvs bascd on the exact problcnl
statement have been validated for tnoderate values of the
cavitation nur.uber (Brennen. 1969; Guzevsky, 1979: Ivanov,
1980;  Deynekin,  1994).  In  par t icu lar ,  a  desktop cornpt l ter
prograrn has been developed at the IHM UNAS (lvanov,
1980).  l t  a l lows cornputat ion of  cavi t ies behind ax is t l tnetr ic
cavitators of practical arbitrary shape. including those with a
concave face directed uDstrealtl and cavitators with an inlet.
However, sirnilar contputational rnethods tor'
nonaxisymrnetric cavitators or rrorrzero yarv angles are l lot
known to these authors.

The dependence of the l iydrodynarnic forces oll the ya\v

angle are determined exper imenta l ly  in  pract ice.  l lowevet '
the nature of such dependence can be evah.rated trsirrg the
solution for the trvo-dirtrensiorral problerr of l iee-stleamline
f low around a contour  represent ing a nter id ional  sect io l t  o f  the
cavitator-cavity systenl. Assuttre tltat the generatrix of the
cavitator represents a four-sided polygon, ABCDE, sytl l l l letrlc
re lat ive to the ax is  passi r rg through the ver tex as s l rorvt t  i l t
f igure la .  Also.  assume that  the cavi ty  detac l tes at  t l te  f ixed,
sal ient  points,  A and E.  Note that  th is  rnet l rod is  easi l l '
appl ied to polygonal  contours wi t l t  more t l ran four  seql l lents.

rvhere ft and V are the depth and the speed of motion, respectively,
and p. is the caviry pressure. The midsection diarneter, D., and
tlre length, L,, of a stationary axisynrmetric supercavity do not
depend on the cavitator shape for srnall o'. They are detennined
by its diarneter. Dn, the drag coeficient, c', and the cavitation
rrurnber (Garabedian. I 956):

D =  D^ .8 ,  r .  =  %" [ t l
\ o  o  \  o

The follorving approxinrate fonrrula for the drag coelficient of a

blLrnted cavi tator  is  va l id  at  smal l  cav i tat ion nutr rbers
( L o e v i n o v i c h . 1 9 6 9 ) :

c ,  = c , , , ( l + o ) ,

rvlrere c,o is the drag coetficient value for a given cavitator rvhen

o= 0 (that is. lbr free strearnline flow).

( 2 )

( 3 )
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The exact solution of the two dimensional problem may be
used for the estimation of drag in cases of flow around
axisymmetric cavitators at zero yaw angle. The pressure
distribution, p, along the generatrix of the cavitator is taken from
the solution of the two dimensional problem of free-sfeamline
flow around the contour coinciding with a meridional section d
the cavitator. Then the drag is approximated by integration:

z( , , )=  T 
!1- ! !  a , , .'  J , d w  d u

Solution 5-6 contains five real paranteters: go > 0,
0 < € < - ,  a n d  0 < 1 "  <  v < l  < K ( e .  T h e  k i n e m a t i c
condition at infiniry, 0(e) = cr, and four condirions definine
the lengths of  the segrnents are then appl ied:

l Q ( n V n  =  I
^  ( q )

( 8 )

x R,,

'  A = l l t l l p - D  l y d y ,|  \ .
o

( 4 )

where R,, = D,,/2. This approach is not rigorous; however, for
disks and cones this rnethod predicts drag values close to
exper i r lenta l  data (Plesset ,  e t  a l .  1948;  Bi rkgof ,  e t  a l ,  1957).

FREE.STREAMLINE FLOW
CONTOURS

PAST POLYGONAL

Aconformity of points of the physical and the parametric complex
planes is expressed in the form:

The scheme of fiee-streamline flow past the four-sided,
symnretric, two-dimensional, polygonal contour ABCDE with the
axis inclined at an angle c to the fiee stream is adduced in figure
l. The lengths of intemal segments BC and CD are both equal to
b and they make an angle np with the x-axis. The lengths of the
external segments are equal to a and they make an angle ny with
the.r-axis.

The solution of the problem is constructed by Chapligin's
method of singular points (Gurevich, 1979; Fedorov, 1960) by
means of a conformal transformation of the physical flow of
complex potential Ll/ onto the first quadrant of the plane of the
parametr ic  complex var iable,  = (+ iq

d w  , ,  , ,  ( l  +  u t  ) ,  
( 5 )

: _ : _  =  4 9 n ( l + e . ) i . _ _ - j . l ,
d u  

' \ ' \  , ( e r + u r \ .

d w  , *  u - i ( u - i v \ ' u - ' f  r - i ) , ) t - t ' / u - i r ) 1 - !  ( 6 )

A = u - '  , - l . r - v )  \ r . ^ )  t r * k J

Here dWldz: V exp f ie) is the complex velocity and <p6 is the
value of potential at the caviry detachment point, ,4. Using the
condition on the free streamlines V:V - f i 'om equation 6, it is
easy to obtain the expression for the slope of the free streamlines:

e(E) = ny + 2arctan f, + zQp,- l)arctan Iq s , z \

X *
t r

J o(n)rn = t, J o(llar = ",
N

where all lengths have been scaled with b, and wlrere :

+ q ^  ( t  + . ' )  l n  *  u l , u - ,o(n) : ----- .. -l ' ' " 
1

v _  l 1 ] -  v l  ( 1 0 )

. .  l (n * r) (n * *) l ' l '  (r  * n) 'n
^ l;------;T;- 'i

l (n  -  r )  (n -  * ) l  ( . '  *  n ' ) '

Except for two unknowns, it is possible to obtain a
system of three functional equations for three unknowns,
which may be solved numerically by Nervton's method
(Romanovsky, et al, 1970). The quadratures are conlputed
by Gauss' method, accounting for t lre singularit ies of the
integrands. After defining the transformation parameters and
thescalefactor, <po /bV_, all the flow characteristics can be
computed. The pressure distribution along the contour is:

/ , , "  ( l i )
c  = P . - p -  = r _ [ ] l l'  

IPv: \Y- l
L

, ( rt-r ') '(n - v)'t iu-'rrn - ir '1rtr-r 'rr rt - *)"'-u'= ' - [ . n + l J  
t  n . ' J  I n . i ]  t r . ' . J

The cornplex force acting on the contour (Gurevich, 1979) is

x+ iY = npv*e--n.r[ v-h#),,= 
( r2)

from which the force and moment coefficients are computed as

Jo( lFn =o,
0

|ov: ni

. . (  1 " r )
+2(y - F)[arctan 

* 
+ arctan 

*.J 
.
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^ X
c.. = ---:-

'  a l / :  D
P  t _  r . n

^  e , ,  ( l + e ' )
-  ) t  -

bV_ € '

( E  I
,ra,, = n"{l b- o-)re}

" 
{;- 

+ (2u - r)/, (u)+ (y -rr)[/, ( i) +/, (K)]]

^ Y
c  - :

t  pv- 'R"

9 , ,  l + e ?
-  f  - -' '  

bV-  € l

" 
t= 

+ (2u - r)t (v)+ (v - rr)[/, (r)* /, (,.)]i

^ M ,'* = 
Tpv!* '

where the moment is that about the contour center:

THE PHYSICAL REALIZABILITY OF TWO-
DIMENSIONAL SUPERCAVITATING FLOWS

We chose the generalized polygonal approxinration of the
cavitator contour with the purpose of developrnent of a fast
algorithrn on a desktop computer. lt is known that the flow
speed is infinite at an exterior angle (Curevich. 1919).
Accordingly, the pressure is negatively infinite. Experience
shows that this local rarefaction frequently has a poor
influence on the global hydrodynarn ic behavior of the
contour. Local separation or cavitation may occur in practice
near the angular points of the contour.

Inflection points on a fiee strearnline can also occur in
certain cases owing to the presence of angular points on the
contour. For example, it occurs for wedges when the yaw
angle, c,, exceeds sorne crit ical value cx..,. The position cf
the inflection point on the fue strearnline is defined fiorn the
condi t ion e ' (6)  :0 ,  f rom which;

(  t 4 )
- 0

Equation l4 is easily reduced to a cubic equation in (2.

Thus. two additional constraints l imit the selection d
the contour segment angles y and p for physically-realizable
free-streamline flow with cavity detachment at points I and
E. Firstly, for y = 0, the fiee streamlines nlust be strictly
convex according to Bril loui'n's principle (Birkgof and
Sarantonello, 1957; Romanovsky, et al, 1970). Secondly, 1
must be greater than p, since otherwise the cavity would
detach at D or I (depending on the yaw angle, cr), rather than
at A and E, due to the summary rarefaction in the
neighborhood of the exterior angle.

The condition of the existence of an inflection point
follows from equation 14 in the specific case of a wedge,

Y =  P :
(  l 5 )

( 1 3 )

t  v (2p -  t )

l .F *  I  * f  *
(y - pXr + r)(Ir + (' )
( r ' *q 'X* ' *€ ' )

The other quantit ies appearing in these expressions are:

R"  i s i n ( rp )+as in ( r y )

and:

/,(') : ;+ /, (") :

= +i .,,n,[',n ) #.rtnr fr]an

' [e '  (e ' - 3 ) + s ' ? ( l e ' - t ) ]

( e ' + s ) '

Thc coordinates of contour points x(q) andy(r1) are computed
using equation E with g=9. The coordinates of points on the
upper (0 < 6 < e) and lower (e < E < -) free streamlines arc
computed using equation 8 with q = g'

THE INFLUENCE OF VISCOUS DRAG
This method for predicting the hydrodynamic characteristics

of free-streamline flow around polygonal contours was applied to
sharp wedges at small yaw angles for prediction of flows past
underwater foils and struts (Fedorov, 1960; Romanovsky, et al,
1970; etcetera). In such cases, the lift computation has practical
significance. The predicted dependence ofdrag on yaw angle does
not correspond to experimental data, because viscous drag (which
is dominant for sharp wedges) has been ncglected. On the other
hand, cavity drag dominates in the case of a blunt cavitator at
small values of the cavitation number.

v  + 2 u - l
- ( U
l +  v ( 2 p -  l )

For v > 0, it is obvious that an inflection point cannot exist
for  p > 0.5.

Equat ion 15 has no roots for  the p late,  y :  p :  0 .5.

That is, an inflection point is not present for any cr.
Analysis of the roots of equation l4 is executed numerically
for cavitaton of arbitrary shape.

The predicted flow reorganization as the yaw angle
increases beyond c., for sharp wedges has been observed
experimentally (Savchenko, et al, 1991): a hysteresis loop
takes place in the experiments with consecutive increase and
reduction of the angle cr.
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ORAG OF AXISYMMETRIC CAVITATORS
Practical extimation of the cavitator drag involves computing

the pressure distribution, p, along the cavitator generatrix from the
solution of the two-dimensional free-streamline flow. The drag d
the axisymmetric cavitator is then estimated using formula 4.
Plesset, et al, (1948) show that the values, c,, for cones computed
this way are close to experimental data. Comparison with
numerical solutions of the exact problem is facilitated by
employing the formulae proposed by Guzevsky (1983):

c .  = c . '  + ( 0 . 5 2 4 + 0 . 6 7 2 p ) o ,  0 < o < 1 ,  o = f r = ]
4 2

(
I  l , ( o . e r s + e . s p ) , 0 . F . +  

( 1 6 )

c , , ,  =  j  l 2

lo.s + r.sr(p - 0.25) -z(p -0.2s) ' ,  I  
I

r  6 ' l t t '

where npt is the semiangle of the cone. The values c,o (that is, for
o -r 0) are obtained by extrapolation. A comparison of the
experimental data with the results of exact (Guzevsky, 1983) and
approximate (Plesset, et al, 1948) computations is adduced in
table l :

2 (Plcssct, cl al, 1948)

The value for an arbitrary contour is estimated from equation
A .

PROGRAM SCAX
The desktop computer program SCAX has been

developed at NUWCDIVNPT to predict axisymmerric f lows
past supercavitating bodies (Kirschneq et al, 1995). The
program colnputes inotational supercavitating flows d
incompressible fluids past bodies of revolution at zero ansle
of attack using fully-axisymmetric boundary elemenrs. f[ is
program has been used to validate the circunrferential
integration for approximating drag, equations 4, and to verifu
some of the numerical results presented below.

The accuracy of program SCAX has been discussed in
detail in Kirschner, et al, (1995). Since publication of that
article, the program has been improved in various ways,
notably via elimination of an error in the cornputation of total
drag once the potential f low problem has been solved.
Additional validation has been based on comparison with the
Guzevsky approximation, equations 16. Figure 2 presents a
comparison of the drag predicted by program SCAX with the
Guzevsky drag approximation from the exact solution for
axisymmetric supercavitating flow past a cone. lt can be seen
that the numerical results are excellent over the entire ranee cf,
cone angles compared (from l0' through 90" semi-anglJ) for
values of the cavitation number, o, of 0.077 and 0.100. This
represents a general ization of the circumferentially-integrated
free-streamline approximation described above, since the
results can be extended to non-zero cavitation numbers, albeit
at the cost of additional computation, and with the l imitation
that program SCAX cannot predict non-axisymmetric f lows.

Additional comparison of the free-streamline results with
those of program SCAX will be presented in the discussion
of some of the examples described below.

STATICALLY STAB LE CO NTOU RS
The pressure forces acting on the inclined contours in

Ilee-streamline flow sum to the resultant force, F, and
moment, Mo, shown in figure 3. The contour wil l be
statically stable if these forces tend to turn the cavitator to
decrease angle c relative to the mass center of the rnodel.
The condition of static stabil itv has the form:

H

6 = a r c t a n a > c r
tr

(  t 8 )

where F, and F,. are the projections of the vector F onto the
x- andy-axes.

Computations have shown that a cavitator is statically
stable if i ts contour is concave towards the stream (in
particular, inverted wedges with p > 0.5). A flat plate wil l be
neutrally stable, F,lF,= tan a, if we do not take into account
the moment Mo induced by displacement of the point d
application of force F from the point C. Computations have
shown that this moment is always stabil izing, but is very
small in value. Convex contours (in particutar, wedges with
p < 0.5) are statically unstable.

,,, = *:L'!,r,(n) {n) fr an (  1 7 )

PROGRAM FLOWJET
The desktop computer program FLOWJET has been

developed at IHM UNAS to carry out the computations using
formulae 7 through 16. For given values, alb,1t, y, and c, the
program computes:

o the coeftlcients c,, c.,., c,,;

r the shapes of the free streamlines;

o the coefflcients ofthe rotational derivatives ci, ci, ci, l

o the coefficient d. for an axisymmetric cavitator;

o the position of the crit ical point, O, on the contour; and,

o the coordinates of any inflection point of the free streamlines.

The program has a convenient user interface and displays the
results on the terminal in graphical form. Examples of application
of the method described above using program FLOWJET are
submitted below.

0.7461

0 . 5 1 8 1
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The force polars for wedges are adduced in figure 4 for a series

of values of wedge semiangle, F : np' in degrees. The

characteristic stability regions are shown in figure 5. Wedges are

statically stable for 0 :> 90" and are statically unstable for p < 90"

The lift of a rvedge is equal to 0 irrespective of the yaw angle for

0  =  50 '35 '

Progranr FLOWJET allows selection of the best cavitator

shape for static stabiliry for which the arbitrary 6'o is maximum.

The best cavitator from a practical point of view: (l) is statically

stable; (2) has a maximal rotational derivative ci; and, (3) has a

minimal drag coefficient cx0. The following question is

interesting: Do statically stable contours exist which have lower

drag than the flat plate? Computations have shown that for such

con tou rs  p>0 .5 ,  Y<0 .5 ,  and  a lb -0 .1  .  Theo re t i ca l l y

physically realizable members of this set exist, as defined above.

However, the lural answer to this question requires additional

experimentation.

CONTROL OF CAVITY DIMENSIONS
It is apparent from equation 2 that control of supercavity

dimensions for constant D^, h, and Iz- is possible by fwo

techniques: (l) changing the cavitation number, o; and, (2)

changing the cavity drag coefftcient, c'. The first technique is

used-foispeeds of motion ranging fiom l0 to 100 m/s and is

realized by gas-supply to the cavity, that is, by increase of p"'

This approach is impractical for very large speeds of motion or

small dlmensions of the body' Therefore, the possibility cf

supercavify control by changing c' is very interesting.

Both the length and the maximum diameter of the cavity are

proporlional to n['o as is visible from equations 2 and 3:

c ,o ( l  +o )

o

of the free-streamline results agree quite well with those of the
numerical computation using the fully-axisymmetric
boundary element method, but that both methods ovetpredict
the empirical results.

This slower increase of the the experimental values cf
drag with an increase of x (as compared with the analytical
and numerical results) is due to the zones of vortical motion
formed in the interior angles of the cavitator in the
experiment. In other words, potential, free-streamline flow
with a critical point is not realized in the experiment; rather
flow with stagnant zones is realized (Gurevich, 1979).

Photographs of supercavities for two extreme positions d
the cartridge (o:0.077, p: l/3) are adduced in figure 8.
By extending the cavitating edge from x/D,:0 to
xlD^:0.138 in the experiment, the major dimepsions of the
supercavity increased 35%. Figure 8 also presents
predictions of the cavity shap.es for two diferent positions d
the car t r idge (o:0.17,  p = ' / r )  us ing program SCAX. I t
can be seen that the basic effect observed in the experiments is
reflected in the numerical results. Note that the wall-shaped
cavity termination is associated with the modified
Riabouchinsky approximation implemented in program
SCAX. A more exact comparison of the numerical and
experimental results must await refrnement of the program to
allow prediction of flows at lower cavitation numbers: the
current algorithm is l imited by an i l l-conditioned matrix at
very large cavity lengths.

Computations us in g the circumferential ly- integrated free
streamline technique show that the l-shaped contours arc
always statically stable for a + 0.
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D , _

Dn

Hence the supercavity shape should change self-sintilarly by

variation of the parameter c's at constant Dn and o' This can be

realized by changing the cavitator shape while maintaining a

constant diameter of the salient edge.

Such an axisymmetric cavitator with variable geometry is

proposed in figure 6. The meridional section of the cavitator has

ihe l-shaped contour p < 0.5, ̂ y = l. The cavity drag coefficient

is increased from c-(p) up to I by moving the internal cone

relative to the outside cartridge, that is, by increasing parameter a

from 0. This dependence of c'o on alb is shown in figure 6 for L

shaped contours. The dependence of the ratio C,o for

axisymmetric cavitators to the value computed using frs

streimline theory with the circumferential integration

approximation of the drag coefrcient for a disk' 0'82, on the

dimensionless extension of the cavitating edge, xlD^, is shown in

figure 7a, along with experimental data. Results of Program

SbaX are plottid in figure 7b. It can be seen that the results cf

the analytiial approximation based on circumferential integration

L '  = l
D n o

c , o ( l  + o ) l n -

20'7
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Figure 3. ForcesActing on an Inclined Polygonal Contour
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Figure 6. Drag of DShaped Cavitators
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