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ABSTRACT

The nature of the hydrodynamic forces on an axisymmetric
cavitator with a polygonal generatrix is investigated using
analytical and numerical methods. The changes in the forces and
moment with changes in yaw angle are considered for various
cavitator shapes. The exact solution of the analogous two-
dimensional problem is first determined using free-streamline
theory and conformal mapping, and extended to estimate the
forces on axisymmetric cavitators.  The results of a fully-
axisymmetric boundary-element computation are then compared
with the analytical results. The conditions of static stability of
the polygonal cavitator are obtained. The possibility is discussed
of controlling the cavity dimensions by altering the cavitator
shape and thus modifying the associated drag coefficient.

INTRODUCTION
The cavitation number, o, is an important parameter of
supercavitating flows:

2(pgh—pu) (h

c= — ,
pv.

where 4 and V are the depth and the speed of motion, respectively,
and p. is the cavity pressure. The midsection diameter, D., and
the length, L., of a stationary axisymmetric supercavity do not
depend on the cavitator shape for small ¢. They are determined
by its diameter, D,, the drag coefficient, c.. and the cavitation
number (Garabedian, 1956):
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The following approximate formula for the drag coefficient of a

ro

blunted cavitator is valid at small cavitation numbers
(Logvinovich, 1969):
(‘\ ——:C‘\()(1+G)‘ (3)

where ¢, is the drag coefficient value for a given cavitator when
o= 0 (that is. for free streamline flow).
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The validity of these asymptotic formulae has been
confirmed experimentally for models with disk cavitators
moving with speeds ranging from 300 to 1200 m/s
(Savchenko, et al, 1992).

The shape of nonaxisymmetric cavitators becomes
important for solving dynamic problems concerning the
stability of rectilinear motion and for computing the trajectory
of supercavitating bodies. Account of the cavitator shape is
especially important for high speeds of motion, say
V~1000 m/s. In such cases, even small discrepancies of
workmanship can result in appreciable cross force because of
the high velocity head, p F*/2. Nonaxisymmetric cavitators
are also applied in practice, for example, to create the lift
compensating for gravity for horizontal underwater motion at
moderate speeds (Logvinovich, 1969; Tzeitlin. et al. 1993).

Effective  methods of numerical  prediction  of
axisymmetric cavity flows based on the exact problem
statement have been validated for moderate values of the
cavitation number (Brennen, 1969; Guzevsky, 1979: Ivanov,
1980; Deynekin, 1994). In particular, a desktop computer
program has been developed at the THM UNAS (Ivanov,
1980). It allows computation of cavities behind axismmetric
cavitators of practical arbitrary shape, including those with a
concave face directed upstream and cavitators with an inlet.
However, similar computational methods for
nonaxisymmetric cavitators or nonzero yaw angles are not
known to these authors.

The dependence of the hydrodynamic forces on the yaw
angle are determined experimentally in practice. However,
the nature of such dependence can be evaluated using the
solution for the two-dimensional problem of free-streamline
flow around a contour representing a meridional section of the
cavitator-cavity system. Assume that the generatrix of the
cavitator represents a four-sided polygon, ABCDE, symmetric
relative to the axis passing through the vertex as shown in
figure la. Also, assume that the cavity detaches at the fixed,
salient points, 4 and £. Note that this method is easily
applied to polygonal contours with more than four segments.



The exact solution of the two dimensional problem may be
used for the estimation of drag in cases of flow around
axisymmetric cavitators at zero yaw angle. The pressure
distribution, p, along the generatrix of the cavitator is taken from
the solution of the two dimensional problem of free-streamline
flow around the contour coinciding with a meridional section of
the cavitator. Then the drag is approximated by integration:
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where R =D, /2. This approach is not rigorous; however, for
disks and cones this method predicts drag values close to
experimental data (Plesset, et al, 1948; Birkgof, et al, 1957).

FREE-STREAMLINE
CONTOURS

The scheme of free-streamline flow past the four-sided,
symmetric, two-dimensional, polygonal contour ABCDE with the
axis inclined at an angle o to the free stream is adduced in figure
1. The lengths of internal segments BC and CD are both equal to
b and they make an angle mp with the x-axis. The lengths of the
external segments are equal to a and they make an angle ny with
the x-axis.

FLOW PAST POLYGONAL

The solution of the problem is constructed by Chapligin’s
method of singular points (Gurevich, 1979; Fedorov, 1960) by
means of a conformal transformation of the physical flow of
complex potential W onto the first quadrant of the plane of the
parametric complex variable u =&+
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Here dW/d= =V exp (-i0) is the complex velocity and @, is the
value of potential at the cavity detachment point, 4. Using the
condition on the free streamlines V=V _ from equation 6, it is
easy to obtain the expression for the slope of the free streamlines:
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A conformity of points of the physical and the parametric complex
planes is expressed in the form:

]i dz dW (8)

Solution 5-6 contains five real parameters: @, > 0,
0<eg<oo, and 0SA < v<] <K<o. The Kkinematic

condition at infinity, 8(e) =0, and four conditions defining
the lengths of the segments are then applied:
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where all lengths have been scaled with b, and where :
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Except for two unknowns, it is possible to obtain a
system of three functional equations for three unknowns,
which may be solved numerically by Newton’s method
(Romanovsky, et al, 1970). The quadratures are computed
by Gauss’ method, accounting for the singularities of the
integrands. After defining the transformation parameters and
the scale factor, ¢, /bV_ , all the flow characteristics can be
computed. The pressure distribution along the contour is:
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The complex force acting on the contour (Gurevich, 1979) is
e dz dw (12)
X+iY = npV_e Res(Vw Gl )
dw du ),..

from which the force and moment coefficients are computed as
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where the moment is that about the contour center:
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The other quantities appearing in these expressions are:
R, =sin(ntp)+ asin(my)

and:
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The coordinates of contour points x(1) and y(1) are computed

using equation 8 with £=0.

The coordinates of points on the

upper (0 <& <€) and lower (e <& <e) free streamlines are

computed using equation 8 with n=0.

THE INFLUENCE OF VISCOUS DRAG

This method for predicting the hydrodynamic characteristics
of free-streamline flow around polygonal contours was applied to
sharp wedges at small yaw angles for prediction of flows past
underwater foils and struts (Fedorov, 1960; Romanovsky, et al,
1970: et cetera). In such cases, the lift computation has practical
significance. The predicted dependence of drag on yaw angle does
not correspond to experimental data, because viscous drag (which
is dominant for sharp wedges) has been neglected. On the other
hand, cavity drag dominates in the case of a blunt cavitator at

small values of the cavitation number.
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THE PHYSICAL REALIZABILITY OF
DIMENSIONAL SUPERCAVITATING FLOWS

We chose the generalized polygonal approximation of the
cavitator contour with the purpose of development of a fast
algorithm on a desktop computer. It is known that the flow
speed is infinite at an exterior angle (Gurevich, 1979).
Accordingly, the pressure is negatively infinite. Experience
shows that this local rarefaction frequently has a poor
influence on the global hydrodynamic behavior of the
contour. Local separation or cavitation may occur in practice
near the angular points of the contour.

TWO-

Inflection points on a free streamline can also occur in
certain cases owing to the presence of angular points on the
contour. For example, it occurs for wedges when the yaw
angle, o, exceeds some critical value a.,. The position of
the inflection point on the free streamline is defined from the
condition 8'(§) = 0, from which:

L A=) (-w)(re)x e
1487 vi+E" (M +8)(x +E7)

(14)

Equation 14 is easily reduced to a cubic equation in &

Thus, two additional constraints limit the selection of
the contour segment angles y and p for physically-realizable
free-streamline flow with cavity detachment at points 4 and
E. Firstly, for y= 0, the fiee streamlines must be strictly
convex according to Brillouin’s principle (Birkgof and
Sarantonello, 1957; Romanovsky, et al, 1970). Secondly, Y
must be greater than p, since otherwise the cavity would
detach at D or B (depending on the yaw angle, o), rather than
at A and E, due to the summary rarefaction in the
neighborhood of the exterior angle.

The condition of the existence of an inflection point
follows from equation 14 in the specific case of a wedge,
Y= H

v+2p-1 <0 (15)
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For v> 0, it is obvious that an inflection point cannot exist
for u>0.5.

Equation 15 has no roots for the plate, Y= =0.5.
That is, an inflection point is not present for any 0.
Analysis of the roots of equation 14 is executed numerically
for cavitators of arbitrary shape.

The predicted flow reorganization as the yaw angle
increases beyond o, for sharp wedges has been observed
experimentally (Savchenko, et al, 1997): a hysteresis loop
takes place in the experiments with consecutive increase and
reduction of the angle c.



DRAG OF AXISYMMETRIC CAVITATORS

Practical extimation of the cavitator drag involves computing
the pressure distribution, p, along the cavitator generatrix from the
solution of the two-dimensional free-streamline flow. The drag of
the axisymmetric cavitator is then estimated using formula 4.
Plesset, et al, (1948) show that the values, ¢, for cones computed
this way are close to experimental data. Comparison with
numerical solutions of the exact problem is facilitated by
employing the formulae proposed by Guzevsky (1983):

1 1
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where ntp is the semiangle of the cone. The values ¢4 (that is, for
o — 0) are obtained by extrapolation. A comparison of the
experimental data with the results of exact (Guzevsky, 1983) and
approximate (Plesset, et al, 1948) computations is adduced in
table 1:

LT 15° 30° 45° 60° 75° 90°

Experiment | 0.15 0.35 0.47 0.61 0.72 0.82
(o ' 1 0.1428 | 0.3353 | 0.5000 | 0.6369 | 0.7461 | 0.8275
Co 7 10.2045 | 03758 | 0.5181 | 0.6350 | 0.7296 | 0.8053

1 (Guzevsky, 1983)
2 (Plesset, et al, 1948)

The value for an arbitrary contour is estimated from equation
4:

B dy (17
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PROGRAM FLOWJET

The desktop computer program FLOWIJET has been
developed at IHM UNAS to carry out the computations using
formulae 7 through 16. For given values, a/b, |, v, and «, the
program computes:

e the coefficients ¢y, ¢, Cw;
e the shapes of the free streamlines;

o the coefficients of the rotational derivatives er, ef, @i

¥ m’

o the coefficient ¢ for an axisymmetric cavitator;

e the position of the critical point, O, on the contour; and,
e the coordinates of any inflection point of the free streamlines.

The program has a convenient user interface and displays the
results on the terminal in graphical form. Examples of application
of the method described above using program FLOWIET are
submitted below.
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PROGRAM SCAX

The desktop computer program SCAX has been
developed at NUWCDIVNPT to predict axisymmetric flows
past supercavitating bodies (Kirschner, et al, 1995). The
program computes irrotational supercavitating flows of
incompressible fluids past bodies of revolution at zero angle
of attack using fully-axisymmetric boundary elements. This
program has been used to validate the circumferential
integration for approximating drag, equations 4, and to verify
some of the numerical results presented below.

The accuracy of program SCAX has been discussed in
detail in Kirschner, et al, (1995). Since publication of that
article, the program has been improved in various ways,
notably via elimination of an error in the computation of total
drag once the potential flow problem has been solved.
Additional validation has been based on comparison with the
Guzevsky approximation, equations 16. Figure 2 presents a
comparison of the drag predicted by program SCAX with the
Guzevsky drag approximation from the exact solution for
axisymmetric supercavitating flow past a cone. It can be seen
that the numerical results are excellent over the entire range of
cone angles compared (from 10° through 90° semi-angle) for
values of the cavitation number, o, of 0.077 and 0.100. This
represents a generalization of the circumferentially-integrated
free-streamline approximation described above, since the
results can be extended to non-zero cavitation numbers, albeit
at the cost of additional computation, and with the limitation
that program SCAX cannot predict non-axisymmetric flows.

Additional comparison of the free-streamline results with
those of program SCAX will be presented in the discussion
of some of the examples described below.

STATICALLY STABLE CONTOURS

The pressure forces acting on the inclined contours in
free-streamline flow sum to the resultant force, F, and
moment, M,, shown in figure 3. The contour will be
statically stable if these forces tend to turn the cavitator to
decrease angle o relative to the mass center of the model.
The condition of static stability has the form:

F, (18)
S =arctan— > o ,

LN

where F, and F, are the projections of the vector F onto the
x- and y-axes.

Computations have shown that a cavitator is statically
stable if its contour is concave towards the stream (in
particular, inverted wedges with > 0.5). A flat plate will be
neutrally stable, F,/F.=tan o, if we do not take into account
the moment M, induced by displacement of the point of
application of force F from the point C. Computations have
shown that this moment is always stabilizing, but is very
small in value. Convex contours (in particular, wedges with
pt <0.5) are statically unstable.



The force polars for wedges are adduced in figure 4 for a series
of values of wedge semiangle, B =mp, in degrees. The
characteristic stability regions are shown in figure 5. Wedges are
statically stable for B > 90° and are statically unstable for § < 90°.
The lift of a wedge is equal to 0 irrespective of the yaw angle for
B =50°35".

Program FLOWIJET allows selection of the best cavitator
shape for static stability for which the arbitrary ¢ is maximum.
The best cavitator from a practical point of view: (1) is statically
stable; (2) has a maximal rotational derivative ¢; and, (3) has a
minimal drag coefficient cw. The following question is
interesting: Do statically stable contours exist which have lower
drag than the flat plate? Computations have shown that for such
contours [ >0.5, y<0.5, and a/b~0.1 Theoretically
physically realizable members of this set exist, as defined above.
However, the final answer to this question requires additional
experimentation.

CONTROL OF CAVITY DIMENSIONS

It is apparent from equation 2 that control of supercavity
dimensions for constant D,, h, and V. is possible by two
techniques: (1) changing the cavitation number, o; and, (2)
changing the cavity drag coefficient, cx. The first technique is
used for speeds of motion ranging from 10 to 100 m/s and is
realized by gas-supply to the cavity, that is, by increase of pe.
This approach is impractical for very large speeds of motion or
small dimensions of the body. Therefore, the possibility of
supercavity control by changing c. is very interesting.

Both the length and the maximum diameter of the cavity are
proportional to ./c , as is visible from equations 2 and 3:

f : L
_D_f: ‘A_O(l_+i)’ _L':l cm(1+(5)lnl .
D, 9 D, o o

Hence the supercavity shape should change self-similarly by
variation of the parameter ¢y at constant D, and 6. This can be
realized by changing the cavitator shape while maintaining a
constant diameter of the salient edge.

Such an axisymmetric cavitator with variable geometry is
proposed in figure 6. The meridional section of the cavitator has
the S-shaped contour p < 0.5, y = 1. The cavity drag coefficient
is increased from ¢, (i) up to 1 by moving the internal cone
relative to the outside cartridge, that is, by increasing parameter a
from 0. This dependence of cxo on a/b is shown in figure 6 for -
shaped contours. The dependence of the ratio &0 for

axisymmetric cavitators to the value computed using free-
streamline theory  with  the circumferential integration
approximation of the drag coefficient for a disk, 0.82, on the
dimensionless extension of the cavitating edge, x/Ds, is shown in
figure 7a, along with experimental data. Results of Program
SCAX are plotted in figure 7b. It can be seen that the results of
the analytical approximation based on circumferential integration
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of the free-streamline results agree quite well with those of the
numerical computation using the fully-axisymmetric
boundary element method, but that both methods overpredict
the empirical results.

This slower increase of the the experimental values of
drag with an increase of x (as compared with the analytical
and numerical results) is due to the zones of vortical motion
formed in the interior angles of the cavitator in the
experiment. In other words, potential, free-streamline flow
with a critical point is not realized in the experiment; rather
flow with stagnant zones is realized (Gurevich, 1979).

Photographs of supercavities for two extreme positions of
the cartridge (o =0.077, pw=1/3) are adduced in figure 8.
By extending the cavitating edge from x/D,=0 to
x/Dy=0.138 in the experiment, the major dimensions of the
supercavity increased 35%. Figure 8 also presents
predictions of the cavity shapes for two different positions of
the cartridge (6 =0.17, p="/3) using program SCAX. It
can be seen that the basic effect observed in the experiments is
reflected in the numerical results. Note that the wall-shaped
cavity termination is associated with the modified
Riabouchinsky approximation implemented in program
SCAX. A more exact comparison of the numerical and
experimental results must await refinement of the program to
allow prediction of flows at lower cavitation numbers: the
current algorithm is limited by an ill-conditioned matrix at
very large cavity lengths.

Computations using the circumferentially-integrated free-
streamline technique show that the X-shaped contours are
always statically stable for a # 0.
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Figure I. The Problem of Free-Streamline Flow Past an Inclined Polygonal Contour
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Figure 2. Comparison of Drag Computed Using a Fully-Axisymmetric Boundary-Element

Method (Program SCAX) with Guzevsky’s Approximation to the
Exact Solution for Supercavitating Flow Past a Cone
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Figure 4. Force Polars for Wedge Cavitators
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Figure 8. Supercavities Behind 2-Shaped Cavitators, |\ = 1/3: (a) Experimental Flow

Visualization, x/D, = 0, 6 = 0.077; (b) Experimental Flow Visualization, x/D, = 0.138 c = 0.077;
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(c) Computation Using a Fully-Axisymmetric Boundary-Element Method (Program SCAX), c = 0.17
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