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The Surface Singularity Method Applied to

Partially Cavitating Hydrofoils

James S. Uhiman, Jr!

The surface singularity or boundary integral method is formulated numerically for the problem of the fully
nonlinear potential flow past a partially cavitating hydrofoil. An iterative scheme is employed to locate the
cavity surface. Upon convergence the exact boundary conditions are satisfied on all portions of the foil-
cavity boundary. The effects of hydrofoil section thickness and camber on cavity volume are investigated.
The results are compared with those generated by a numerical linear theory, which includes the effect of
section thickness, and with Tulin and Hsu’s “‘short cavity” theory. Both section thickness and camber are

shown to have significant effects on cavity volume.

Introduction

As sHIPS have become larger and propeller loadings greater
over the course of this century, the phenomenon of cavitation on
marine propellers has become more the rule than the exception.
This fact has attendant with it many problems. Among these is
the radiated pressure field associated with unsteady propeller
cavitation. This has been shown to be the dominant contributor
to unsteady hull forces and has caused severe noise and vibration
problems on some ships. A related problem is that of underwa-
ter noise. The largest source of underwater noise from a ship is
usually a cavitating propeller. The magnitude and monopole
nature of the radiated pressure field makes use of underwater
acoustic sensors difficult.

Due to problems such as these, a thorough understanding of
cavitation is desirable if we are to try to alleviate or lessen the
severity of the impact of cavitation.

Many forms of cavitation exist, such as bubble cavitation,
cloud cavitation and sheet cavitation. Excellent reviews of the
general state of knowledge in the area of cavitation may be found
in such works as Birkhoff and Zarantonello {1}, Eisenberg and
Tulin [2], Gilbarg [3], Gurevich [4,5], Hsu [6], Knapp et al [7],
Plesset [8], Robertson and Wislicenus [9], Tulin {10}, Tulin and
Hsu [11], Wehausen [12], Wu [13,14] and Yegorov et al [15].

The problem of lifting-surface sheet cavitation, which is ad-
dressed here, is a free-streamline problem,; that is, there is a flow
boundary whose location must be determined as part of the
solution. Such'problems were first addressed by Helmholtz and
Kirchoff, roughly a century ago, via a technique from the theory
of functions of a complex variable called the hodograph. The
problem they solved was essentially that of a supercavitating flat
plate at zero cavitation number. Levi-Civita extended their
technique to include the flow past curved bodies, and others
applied the technique to numerous, now classical, jet and cavity
flow problems [1].

~ The next step was the introduction of models that allow for
finite cavitation numbers and hence finite cavities. These mod-
els assume supercavitation and may be characterized by the
manner in which the cavity is terminated. Among these is the
Riabouchinsky cavity termination and the physically realistic
reentrant jet model [16-19]. These models are all fully nonlin-
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ear, satisfying the exact kinematic and dynamic boundary condi-
tions on the cavity surface. The analytical difficulties inherent
in these models are enormous, and preclude their use as an
engineering tool. A better tool was needed.

In 1953 Tulin {20} developed a linearized theory for zero
cavitation number. There followed a period during which the
theory was extensively applied and extended. In 1959 Geurst
[21,22] introduced the linearized theory for partially cavitating
hydrofoils at finite cavitation numbers and followed it, the next
year [23], with the linearized theory for supercavitating hydro-
foils at finite cavitation numbers. The effect of thickness on
plano-convex foils was investigated, in a linearized sense, by
Wade [24] in 1967.

Three-dimensional effects were the next aspect to be taken
into account. In 1971 Leehey [25] introduced the theory of
supercavitating hydrofoils of finite span. This theory uses the
method of matched asymptotic expansions to match Geurst’s [23]
two-dimensional result to the outer three-dimensional flow with
inverse aspect ratio as the expansion parameter. Following simi-
lar lines, the theory of a partially cavitating hydrofoil of finite
span was presented by Uhlman [26] in 1978.

The large-scale use of computers brought about the next and
present era of solutions to cavity flow problems. Golden [27]
began this trend by numerically reproducing Geurst’s [21] linear
theory for flat plates in 1975. The leap to three-dimensional
problems was made shortly thereafter by Jiang [28]. In 1977
Jiang produced an unsteady numerical lifting-surface theory for
supercavitating hydrofoils of finite span using a vortex-source
lattice technique. This lattice technique was put to perhaps its
ultimate test in 1979, when Lee [29] used it to solve the problem
of an unsteady, cavitating marine propeller.

Obviously, the study of cavitating flows has progressed greatly
in the last 100 years. However, there are still many unanswered
questions in this field, even if we restrict ourselves to the poten-
tial-flow model. Most of the work done in the past 20 years has
utilized some form of linearized approximation. This is true of
the numerical approaches mentioned above. However, due to
the analytical intractability of the nonlinear models, very little
comparison of nonlinear and linear results has taken place, leav-
ing the accuracy and limitations of the linear theory uncertain
and occasionally suspect. There are also questions concerning
nonlinear effects. For example, what are they, how significant
can they be, and could an accurate knowledge of them be used to
engineering advantage? :

To answer such questions some form of tractable nonlinear
model is needed. Fortunately, numerical techniques are now
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available which allow one to make use of today’s high-speed
computers in the solution of the exact, nonlinear problem.

These numerical techniques stem from theorems in potential-
flow theory which state that the solution of a Neumann, Dirich-
Jet, or mixed boundary condition problem may be expressed as
an integral of appropriate singularities distributed over the
boundary of the flow field. Due to these theoreins, these tech-
niques are frequently referred to as boundary-integral or sur-
face-singularity techniques. Following the 1966 paper by Hess
and Smith [30] on the calculation of potential flows about arbi-
trary bodies, the range of applications of these techniques ex-
panded rapidly. Hess [31,32] soon presented procedures for
steady two-dimensional lifting flows and in 1978 Basu and Han-
cock {33] introduced a technique for handling the unsteady case.
By 1976 Bristow [34] had succeeded in developing an iterative
technique for the design problem, the design problem being of
interest here because the techniques employed are closely relat-
ed to those required for the solution of nonlinear free-streamline
problems, _

Giesing and Smith in 1967 [35] had already applied a surface
singularity technique to the problem of two-dimensional hydro-
foils beneath a free surface, but had only imposed the linear free-
surface boundary condition. Results satisfying the nonlinear
free-surface boundary condition were presented by Hess [36] in
1977 at the same conference where Larock [37] introduced simi-
lar techniques applied to jet flows. Finally, in 1981 Pellone and
Rowe [38] applied similar techniques to two- and three-dimen-
sional supercavitating hydrofoil problems.

A need presently exists to validate our working tools, which are
based, by and large, on lifting-surface theory, and to investigate
effects such as camber and thickness in exact nonlinear models.

= chord length
C = integration contour
C = foil-cavity boundary ty
C, = cavity boundary contour
C, = pressure coefficient
PP
YU

Cy, = lift coefficient
L

Nomenclature

N = number of surface elements
Ne.v = number of surface elements over cavi-

Nuet = number of surface elements over wet-
ted surface, Nyet + Neay = N
P = ambient pressure
p. = cavity pressure
p = local pressure
px = pressure at kth control point

In an attempt to meet these needs, an exact nonlinear numerical
model for the partially cavitating flow about two-dimensional
hydrofoils is presented herein. It uses a surface vorticity tech-
nique in conjunction with an iterative procedure to generate the
cavity shape. The effects of thickness, leading-edge radius, and
camber are investigated and compared with linear theory and
the thin-cavity theory of Tulin and Hsu [39]. The results are
found to differ significantly.

Mathematical formulation

Consider the unbounded steady irrotational flow of an invis-
cid, incompressible liquid past a cavitating hydrofoil (Fig. 1).
The flow is then a potential flow and hence possesses a potential
function, ¥, which in the flow field satisfies

v =0 )
One can define a disturbance potential, ¢, by
¢=0U,-7+¢ @)

where U. is the freestream velocity and 7 = xi + yj is the position
vector. If one nondimensionalizes on {U.| and ¢, where ¢ is the
chord length of the foil, then redefining all terms as nondimen-
sional, except where stated otherwise, one finds that

U., = cos(a)i + sin(a)j (3)

Here a is the angle of attack of the foil defined with respect to the
nose-tail line. Equations (1) and (2) still hold, yet now in nondi-
mensional form.

Defining the surface vorticity, 4, to be positive for clockwise-
induced flow, it can be easily shown (see the Appendix), that

a = angle of attack
v = vortex density
vk = vortex density on kth surface element
T' = circulation
O(x,y) = arctan(y/x)
£,n = cartesian coordinates
{£,n4 = sequence defining surface elements
p = fluid density
pLE = leading edge radius

=1 72 g = local flow speed vt _P==P
hoUze qx = flow speed at kth control point o = cavitation number, ¢ YpU2
Cym = moment coefficient © = local flow speed ©
Yl ;)e \ ¢ = disturbance velocity potential
- —— r=r L . .
=t - p:sil:ioflo\:ctl:: ;= Aty ¢ = interior velocity potential

Cp = drag coefficient
D s = arc length

#; = position vector for kth control point

& = velocity potential
¥ = disturbance stream function
¥ = stream function

= YypUtec
D* = region exterior to foil-cavity boundary
D~ = region interior to foil-cavity boundary
dD = foil-cavity boundary
dL = elemental lift force
dM = elemental moment
dD = elemental drag force
g(x) = cavity shape
g = cavity surface element end-point ordi-
nate
h(x) = shape of upper surface of hydrofoil
h-=(x) = shape of lower surface of hydrofoil
# = normal vector, pointing into fluid
n5,n, = cartesian components of normal vec-
tor
#ix = normal vector for kth surface element
fi,Ny, = cartesian components of normal vec-
tor for kth surface element
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f = tangent vector
t,,t, = cartesian components of tangent vec-
tor

11 = tangent vector for kth surface element -

byl = cartesian components of tangent vec-
tor for kth surface element
u,0 = cartesian components of disturbance
velocity
U. = freestream velocity
V = disturbance velocity
VOL = cavity volume
VY = normal velocity influence coefficient
VI = internal tangent velocity influence co-
efficient
x,y = cartesian coordinates

ZepoYep, = cartesian coordinates of ith control

point

Superscripts

— = interior
+ = exterior

Subscripts

A = at point A
B = at point B
¢ = cavity
cp = control point
fw = fully wetted
£ = at cavity termination
s = at cavity detachment
= x-component
y = y-component
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Fig. 1 Partially cavitating hydrofoil

=1 y — n(s)
o= - L v(s) arctan[x " (s)] ds (4)

Here s represents arc length about the foil-cavity contour, C, and
£(s) and n(s) are the cartesian coordinates of the foil-cavity
boundary parameterized on arc length. It follows that the dis-
turbance velocity

V=ve - ®

can be expressed as
V= Lf v(s){?
2 [o]

Boundary conditions
The kinematic condition on the foil-cavity boundary, C, is

29 _
on

(y =) —7 x—$) }ds
=8+ @y—n* - +y—n?
(6)

onC (7

or
A.-V==.U, onC . ®)

where i is the unit outward normal vector to the boundary.

A dynamic boundary condition must also be applied on the
cavity boundary. This involves Bernoulli’s equation, which in
dimensional terms states that

\

1
patTolUP=p 4200 onC, ©)
Here p. is the freestream ambient pressure, p, is the cavity
pressure (assumed uniform) and Q is the surface velocity on the
cavity boundary, C,. In nondimensional form this becomes

Q*=14+0¢ onC, (10)
where
g=bePe (1)
Py pU%
is the cavitation number and
o=10,+Vl (12)

A Kutta condition is required at the trailing edge to uniquely
specify the circulation. In its most general form it states that the
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flow velocity at the trailing edge (Fig. 2) remains bounded, that
is

Vg < (18)

In the linear theory of cavitation a cavity closure condition is
also required. In its usual form this condition states that the net
flux from the foil-cavity system is zero. Since the present meth-
od uses a surface vorticity distribution, the flux is necessarily zero
and a closure condition in the same vein as the linear theory is
inappropriate. A cavity termination model, however, is re-
quired. The model adopted here is essentially a Riabouchinsky
model in that there is no reentrant jet and no finite wake.

In purely potential-flow theory the location of the cavity de-
tachment point would be determined by the Brillouin-Villat
condition, which states that the curvature of the boundary
streamline be continuous at the detachment point. In a real
liquid, however, the location of the detachment point is gov-
erned by viscous effects and is generally found to be downstream
of the location determined by using the Brillouin-Villat criterion
(see Arakeri [40]). In light of this, the cavity detachment loca-
:lion has been left as an input parameter to the numerical proce-

ure.

Alternate boundary conditions

The boundary conditions (8) and (10), given in the previous
section, are exact. Together with the Kutta condition (13) and
the cavity termination model these conditions yield sufficient
information to determine the unknown vorticity distribution and
cavity shape. There exist, however, alternate but equivalent
formulations of these boundary conditions which are better suit-
ed to a numerical solution. - The reasons for this will be discussed
later in the section on numerical formulation; only the mathe-
matical formulations are given here. '

Flg. 2 Local trailing-edge flow for partially cavitating hydrofoil
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An alternate form of the kinematic boundary condition is
i.V-==i.U onC (14)

where V— denotes the disturbance velocity on the interior of the
foil-cavity boundary. To show this, one notes that this condition
is equivalent to stating that

20 _

ot

where again the superscript denotes the interior. However, this
condition means that ® is a constant on the interior of the foil-
cavity boundary, and the maximum principle for potential func-
tions then states that ® is constant on the entire interior region.
With this fact it is evident that

el 2
on

but since normal velocities are continuous across vortex sheets
(see Appendix) one finds that

gt

on
where the superscript denotes the exterior of the foil-cavity
boundary. The original boundary condition has thus been re-
covered.

Another form of the kinematic boundary condition is useful on
the cavity surface. If

on C (15)

=0 onC (16)

=0 onC a7

i=ni+nj (18)
and
V=ui+vj (19)
then equation (8) may be written as
nu + cos(a)] = —n,[o + sin(a)] (20)

Denoting the shape of the cavity by g(x), then on the cavity
surface one finds

dg .

dx n,

Hence the kinematic boundary may be condition written as

dg _ v+ sin{a)
dx u+ cos(a)

The dynamic boundary condition also has alternate formula-
tions. One way of writing this boundary condition is

G-(U.+VE+[R- (U +VE=(14+0)

(1)

(22)

onC, (23)
Since the kinematic boundary condition is also applied on the
cavity boundary, the above simplifies to

f-0.+V)P=Q+0) onC, (24)
This equation is still nonlinear. However, one usually knows the
direction of flow along the cavity, so if one selects ¢ in such a

manner that

1-(U.,+V)>0 onC, (25)
then the square root of equation (24) may be taken. Keeping
this in mind and being forwarned that in the numerical proce-
dure it is more convenient to set the cavity length and solve for
the cavitation number, instead of vice versa, the dynamic bound-

ary condition becomes

1.Vv-Ji+te=-i-0.,

(26)
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One now has an equation that is exact and yet linear in the
quantities t - V and y(1 + o).

Since the procedure used involves a surface vorticity distribu-
tion, there is yet another way to formulate the dynamic bound-
ary condition. The alternate kinematic boundary condition stat-
ed that

1t (U +V)=0

Using 'this and the fact that the jump in tangential velocities
across a vortex sheet is equal to the local vortex strength, that is

=t (U + V=1 (U, + V) (27)

one may replace the surface velocity in equation (24) by v, and
take the square root to arrive at the dynamic boundary condition

y—{Jd+a) =0 (28)

One must exercise great care when using these dynamic
boundary conditions obtained by taking the square root of Ber-
noulli’sequation. The definitions of positive vorticity and of the
tangent vector must be carefully considered or the assumption of
taking the positive root of both sides may be invalid.

The Kutta condition can also be expressed in alternate forms.
If one restricts one’s attention to hydrofoils with finite trailing-
edge angles, then in the partially cavitating case the local flow at
the trailing edge must resemble the flow about a wedge (see Fig.
2). For the Kutta condition to be satisfied the flow must possessa
stagnation point at the trailing edge. In this case the flow will be
symmetric top and bottom and thus an equivalent statement of
the Kutta condition is

I, (Up+ V) =15+ (U, + V) (29)

where A and B refer to points on the upper and lower surfaces,
respectively, which are equidistant from the trailing edge. The
flow about a partially cavitating hydrofoil resembles a wedge
flow only in the region very close to the trailing edge, however,
and hence the symmetry condition (29) holds only as A and B
approach the trailing edge. Thus for a partially cavitating hy-
drofoil the symmetry condition must be that

lim ,- (U, +V,)==lim {5-(U,+Vy)  (30)
A—TE B—TE

Other quantities of interest

The cavity volume (or more precisely, the sectional area) is of
great interest. In an unsteady case the volume velocity deter-
mines the monopole-type acoustic source strength. If one is
given to quasi-steady analysis, then the difference between the
maximum and minimum cavity volume is directly proportional
to the volume velocity. If g(x) denotes the cavity shape, as
before, and h*(x) denotes the upper surface of the hydrofoil, then
the cavity volume is simply

£

VOL = [ (g ~ K0 (31)

S

where s is the cavity detachment point and £ is the cavity length.
The lift is also of interest. The lift coefficient is given by

Cp=2r 82)
where T is the non-dimensional circulation about the foil-cavity
system. It is given by

r= % (Ut V) - ds (33)
c

The contour C is some contour that surrounds the hydrofoil-

cavity system. In potential flow the above integral is path

invariant as long as the path remains in the fluid. Thus one may

deform the contour C until it coincides with the foil-cavity
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boundary. At this point the integrand becomes known and one
can rewrite equation (33) as

r=§ O+ 7)-ids (34)
Cc

or

r={ yods (35)
c

Since the technique to be followed is a surface vorticity tech-

nique, this last expression is the most convenient; so finally

cL=2 f
c
Alternatively, the lift, as well as the moment and drag, coeffi-
cients can be arrived at by suitable integrals of the pressure over
the hydrofoil surface. If one defines the unit tangent vector to
the surface as

v(s)ds (36)

(37)

where n, and n, are the x and y components of the unit normal
vector, then the force normal to the free stream on an element of
the hydrofoil surface of length ds is

t=ni—njf

dL=—pt-U.ds (38)
where p is the local pressure (see Fig. 3).
y
[
X
Fig. 3 Forces on a surface element
The total lift force is then
(89)

=-f p7-U.ds
Cp

This integral must be taken along the hydrofoil boundary, Cs,
not the foil-cavity boundary. In nondimensional form this be-
comes

C.= f Cpi-U.ds (40)
Cs
where
1 Po—P
=2 T 41
Co=7 7 (41)

is the pressure coefficient.
Similarly the force parallel to the free stream on a surface
element of length ds is

dD = —pi - U, ds (42)
Thus the total drag coefficient is given by
Cp= 4 Cii - U.ds (43)
Cy
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The moment about the origin generated by the same infinitesi-
mal surface element is

dM = ~p#Xdds (44)
hence the moment coefficient becomes
CM=§ Cpixﬁds (45)
CB

Numerical boundary-value problem

As described in equation (6) the disturbance velocity field in
the ideal fluid flow about a cavitating hydrofoil can be expressed
as the integral of a surface vorticity distribution about the foil-
cavity boundary. In a manner akin to Hess [31], it can be shown
(see Uhlman [62]) that to lowest order in surface element length,
this integral can be written as the sum of straight-line elements of
constant vorticity. This representation is exact in the sense that
as the number of elements increases without bound and the
maximum element size approaches zero, the original integral is
recovered in the limit.

The above-mentioned sum may be written as

N

V(x,y) = z Yk { 7“(x>y,§k+1’ﬂk+1vgka’7k)
k=1

+F oy ek (46)

Here vj is the vortex density of the kth surface element whose
end points are (£,m) and (&k41,m041).  The expression in brackets
represents the velocity that would be induced by the kth element
at the field point (x,y) if its vortex density were unity. Exact
expressions are easily obtainable for 4 and v [62]. Note that
equation (46) is linear in the vy’s.

With equation (46) describing the velocity field, the questions
of how to formulate and implement the boundary conditions
must be addressed. Again following Hess, control points
(%cppYcp,) are defined by

top = b+ &) i=1....N

(47)
Yop, = Y(nigy + 1) i=1 ... N
It is at these control points that the boundary conditions will be
satisfied.

Since there are N control points and the kinematic boundary
conditions must be satisfied at each of them for the solution to be
exact, and since there are N,,, control points over the cavity at
which the dynamic boundary condition must also be satisfied,
one finds oneself with N + N,, equations. With the addition of
the Kutta condition, the total number of equations becomes N +
Neaw + 1. Having set the cavity separation location, s, and the
cavity length, £, the cavitation number, ¢, becomes an unknown.
Thus between the ;s and o, the numiber of unknowns reaches N
+ 1. Obviously the remaining unknowns are the ordinates of the
cavity shape of which there are N,,.

Unfortunately, there appears to be no way to solve for all the
unknowns directly and still have a linear system of equations.
Due to this fact, an iterative scheme is necessary to satisfy all the
boundary conditions.

The iterative scheme consists of assuming a cavity shape and
satisfying only the dynamic boundary condition at the control
points on the cavity. This yields N,y equations. At the control
points on the wetted portions of the hydrofoil, the kinematic
boundary condition is satisfied, yielding N additional equa-
tions, where Nyet = N — New. With the addition of the Kutta
condition the total number of equations reaches Negy + Nyt + 1,
or N + 1 total equations. Since the y;'s and o yield a totalof N +
1 unknowns, a linear system of N + 1 equations in N + 1
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unknowns is obtained. This system of equations is then solved
and the solution is used in conjunction with the kinematic bound-
ary condition over the cavity to generate a new cavity shape.
This iteration procedure is then repeated until convergence is
obtained, at which point all the boundary conditions are satisfied
exactly.

The cavity termination model must be considered when the
kinemnatic boundary condition is invoked to generate a new
cavity shape. The numerical equivalent of equation (22) is
integrated back from the leading edge of the cavity with the
initial condition that the leading edge of the cavity remain on the
foil. If one proceeds in this manner, one finds that the cavity
trailing edge does not end on the foil. Hence to close the foil-
cavity boundary contour, a cavity termination “wall” is fash-
joned which connects the trailing edge of the cavity to the foil
(see Fig. 4). The surface elements forming this wall are treated
as part of the wetted portion of the hydrofoil.

CAVITY TERMINATION
WALL

—— —
B

CAVITY SURFACE
HYDROFOIL

/

—V\\\\\\\\\\\\W
Fig. 4 Riabouchinsky-type cavity termination model

As mentioned before, the reentrant jet model is the most
physically realistic cavity termination model in the sense that the
streamlines of the actual fluid flow are best represented. The
next most realistic cavity termination model is the Riabou-
chinsky type. The two models have many similarities. Tulin
{10] has shown, for example, that to first order, both models
require cavity closure in the linearized theory. The most salient
point, however, may be that both models have a stagnation point
on the hydrofoil at the aft end of the cavity. This stagnation
point has been found experimentally by Meijer [41]. Hence in
order to imitate physical reality as best as possible, a cavity
termination model with this feature should be chosen. Other
cavity termination models have also been studied, for example,
Wu’s open-wake model. None of the other models, however,
have a stagnation point at the after end of the cavity.

The cavity termination model employed in the present work is
of the modified Riabouchinsky type. The classic Riabouchinsky
model applies only to supercavitating flow in that it “closes” the

PRESSURE COEFFICIENT
oS

CP o0

NV

/ CAVITY TRAILING EDGE
S‘i’AGNATION POINT

e 0.1 02 03 04 05 0.6 0.7 08 09 10
CHORD

Fig. 5 NACA 16-006 section pressure distribution o = 4 deg, bic=

0.50

1
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two free streamlines bounding the cavity with an image body
downstream. This closure is done in such a manner that the
circulation about the body-cavity-image system is zero. This
classic form has no analog in partially cavitating flow because the
Kutta condition at the trailing edge of the hydrofoil determines
the circulation, which in general will be nonzero. Instead, a
modified form of the Riabouchinsky cavity termination model is
used. In this modified form, the cavity is closed with a short
vertical “wall” on which the kinematic boundary condition is
satisfied. Hence, at the juncture between the wall and the
hydrofoil, a concave corner flow is established. This corner flow
yields the aforementioned stagnation point (Fig. 5).

Having described the general nature of the iterative proce-
dure, the explicit form of the boundary conditions in the numeri-
cal formulation can now be described. The kinematic boundary
condition as expressed in equation (8)

A-V=—h.0, (48)

where, V is the disturbance velocity field and U.. = cos(a)i +
sin(a)f is the free-stream, can easily be expressed in numerical
form. If one defines

N — ;
Vg = ny - U(xcp,)ycp,:fkﬂ"7k+1’fk”7k)
+ ny‘ ¢ U(xcp‘rycp"gk+l’nk+lank+I)Eka"k) (49)

then V¥ is the normal velocity that the kth surface element
would induce at the ith control point if the vortex density of the
kth surface element were unity. With this convention, equation
(48) may be written in discrete form as

N

Z 7 VR = —[n,, cos(a) + n, sin(a)]
k=1

(50)

However, this form of the kinematic boundary condition is not
used. This is due to the fact that a constant distribution of
vorticity on a straight-line segment will induce no normal veloci-
ty at the midpoint of that segment; therefore, all the influence
coefficients of the form V¥ will be zero. Thus, the main diago-
nal of the matrix formed, in part, from equation (50) will contain
zeros and the matrix will be ill-conditioned. In order to circum-
vent this problem, one must use an alternate form of the kine-
matic boundary condition, such as that given in equation (14)

t.V=—.0, (51)
Expressed in discrete form this equation becomes
N
2 vV E = =t cos(a) + ¢, sin(a)] (52)
k=1
where
Vk‘- = x ‘ u—(xcp"'ygp‘1£k+l:nk+1>£kank)

+ ty‘ ° U—(xcp‘,ycp‘,gh1,7lk+1,£k’77k)-] (53)

The superscript =" denotes that all velocities are to be calculat-
ed on the interior of the foil-cavity boundary. Thus V™ repre-
sents the internal tangent velocity induced at the ith control point
by the kth surface element if the vortex density of the kth surface
element were unity. In this formulation, the influence coeffi-
cients of the form VI~ have the largest absolute value, so the
matrix in question becomes diagonally dominant and therefore
better conditioned. This is the form of the kinematic condition
that is employed during each iteration cycle when solving for the
unknown o and vx’s.

The dynamic boundary condition can be expressed numerical-
ly in two ways. Referring to equation (26), that is
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V-0 +e)=-i-0, (54)

one may express the dynamic boundary condition in the form

N
D N VE = T+ 0) = ~(t, cos(a) + 1, sin(a))  (55)
k+1

Here the superscript “+” denotes the fact that the induced
velocities are to be calculated on the exterior of the foil-cavity
boundary. It should also be noted that one is not solving for ¢
directly, rather the quantity (1 + ¢) is being considered an
unknown from which o can be derived at a later time.

Another form for the dynamic boundary condition is

y={J(1+a)=0 (56)

as given in equation (28). Expressed numerically this becomes

simply
v, =JaA+a) =0 (57

Either form of the dynamic boundary condition can be used.
In practice it has been found that the fastest and most stable
convergence is achieved by averaging the two alternate forms.
Hence, all results presented herein have been arrived at in this
manner.

Equation (30) is referred to in order to formulate the numeri-
cal Kutta condition. This equation states that the surface veloci-
ties on the upper and lower surfaces of the hydrofoil must be
equal at the trailing edge. Since in the present formulation there
is no control point at the trailing edge, the surface velocities on
the upper and lower surfaces at the trailing edge are obtained by
linear extrapolation from the surface velocities at the two control
points adjacent to the trailing edge on each surface. Thus, if a;
denotes the arc length from the trailing edge of the hydrofoil to
the first control point on the upper surface, and if a3 denotes the
arc length from the trailing edge to the second control point on
the upper surface, then the surface velocity at the trailing edge
on the upper surface is approximated by

GRPer = Q182 — a0,

aG=q
Here, q; and g, are the surface velocities at the first and second
control points respectively, that is

(58)

N
q = Z’YkV{l+ +.t.l : 17.,,

k=1
and (59)
N
9= Z 'kalg' + ?2 -0,
k=1

Since the two control points on the lower surface adjacent to the

trailing edge of the hydrofoil are the Nth and (N — 1)th, one may
similarly define ay and ay-, as the appropriate arc lengths from
the trailing edge, and gy and qy-, as the corresponding surface
velocities

N
N = Z‘kalﬁ +?N‘ fJo
k=1
(60)
N
An-1 = 2 ’YkaT(Tv—l) +iy,-Us
k=1

With these quantities defined, one may write the extrapolated
surface velocity at the trailing edge on the lower surface velocity
as
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wer - INON-1 ~ gN-1@
= ——— (61)
ay-) —ay

Using equations (58), (59), (60) and (61), and bearing in mind
that the tangent vectors differ in direction on the upper and
lower surfaces, one may write the Kutta condition as

N T
z y an{l‘L - ‘11V2k+ + aN—lV{);IF - aNV{(?\-I—l)
* Gy —a

et ay-y —ay

a4 —a

- a?—a?
Um‘ 2¥1 12|
aN_l—aN

an-iiy+ aN-t.N—l} (62)

The numerical formulation of the boundary conditions and
Kutta condition necessary to form the matrix which is solved for
the yi’s and ¢ at each iteration is now complete. The matrix is
formed from the following equations:

KINEMATIC BOUNDARY CONDITIONS

N
> wvE ==i-0.,  i=1... N,
k=1

DYNAMIC BOUNDARY CONDITIONS

N
Z wh-Jal+a=-4-0.,

k=1
i=Nyu+1 ... Noy+N, (64)

and the Kutta condition as given in equation (62). These equa-
tions are then solved using Gaussian elimination with partial
pivoting.

At this point, the dynamic boundary condition is satisfied on
anassumed cavity surface and the kinematic boundary condition
is satisfied on the wetted portions of the hydrofoil. The kine-
matic boundary condition is not, however, satisfied on the cavity
unless the correct cavity location has been determined. The
essence of the iteration procedure is to determine the correct
cavity location. To do so, the solution determined above is used
in conjunction with the kinematic boundary condition as ex-
pressed in equation (22), that is

dg _ sinf@)+v

dx  cos(a) +u (65)

The assumption is made that the cavity leading edge remains
attached to the hydrofoil and equation (65) is then integrated
from the leading edge to the trailing edge of the cavity. Once
the ordinate of the trailing edge of the cavity is known, surface
elements are erected to form the Riabouchinsky wall connecting
the trailing edge of the cavity to the hydrofoil. Numerically,

.equation (65) is expressed as

N
sin(a) + Z YV
8i+1— & = k=1 (66)
X — X N
T
cos(a) + z 7. U
k=1

where (x;,g;) are the coordinates of the end points of the surface
elements on the cavity and (Uy, Vi) denotes the cartesian veloci-
ty induced at the ith control point, (%XeppYep,), by the kth surface
element assuming its vortex density is one. Assuming for the
moment that the index 1 begins at the leading edge of the cavity
and increases toward the trailing edge of the cavity, equation
(66) may be written in the form of a recursion relation defining
the new cavity ordinates as
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N
sin(a) + Z YV
k=1 _
g =&+ (xy — x) M ’ i=1,...,Ng
cos(a) + Z YUk
k=1
(67)

With the new cavity location determined, the Riabouchinsky
wall is erected by simply dividing the vertical distance between
the ordinate of the trailing edge of the cavity and the ordinate of
the hydrofoil surface immediately below it into the surface ele-
ments allotted specifically for this purpose (see Fig. 6).

CAVITY TERMINATION
WALL

CAVITY SURFACE
HYDROFOIL

o —— -

Fig. 6 Riabouchinsky cavity termination “wall”’—discrete form

The unit normal and tangential vectors and the location of the
control points on the Riabouchinsky wall and the new cavity
surface are then redefined, and equations (62), (63) and (64) are
used to form a new boundary-condition matrix which is then
solved to yield the solution corresponding to the new cavity
shape. This procedure is repeated until the solution has con-
verged.

Quantities of interest

To each iteration there corresponds a cavity shape and the
solution of the boundary-value problem associated with it.
From these one may derive such quantities as cavity volume, lift
coefficient, and moment coefficient.

To get the cavity volume, equation (31) must be expressed in
numerical form. This equation may also be written as

£ £
VOL = ] g(x)dx — [ h*(x)dx (68)

s s

The last integral on the right-hand side is merely the area of the
hydrofoil above the x-axis under the cavity. This quantity will
not change from iteration to iteration since the cavity length isan
input. The first integral on the right-hand side is the area under
the cavity above the x-axis and may change from iteration to
iteration. However, the first assumed cavity shape, in iteration
zero, is the shape of the hydrofoil in way of the cavity; hence one
may write

A= j * W

y)
= j g(*)dxlirer=o (69)

Using the same notation used in equation (67) one may express
equation (68) numerically as

Nﬂv
1
VOL'ITER=1 = ) 2 (81 T+ 8)(xi1 = xi)llTER=j —4, (70)
k=1

The circulation is also easy to find. By equation (35) the
circulation, T, is just the integral of the surface vorticity about
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the foil-cavity boundary. In discrete form this becomes
N

r= z Y& — 87 (mey — m71V2 (1)
k=1
The lift coefficient, Cy, can now be found as simply twice the
circulation.
An alternate method for determining the lift coefficient is
given in equation (40). ‘In discrete form this equation may be
written as

N
C.= z pilidy- U., (72)
k=1
where

=1—1 (13)

is the pressure coefficient at the kth control point, £ is the length
of the kth surface element on the hydrofoil, that is

£ = (£ — £ + gy — 071 HirER=0 (74)
and

-

t = nyi — 1, fhrereo (75)

is the unit tangent vector on the kth surface element on the
hydrofoil. The notation “ITER=0" above, means that both £}
and t, as used in equation (72), refer to the element lengths and
tangent vectors on the actual hydrofoil surface, not on the cavity
surface. Since the hydrofoil surface and assumed cavity surface
coincide at iteration zero, the values of £; and £} for that iteration

are saved and used for the evaluation of the forces in all subse-.

quent jterations. Also, since the pressure is assumed constant in
the cavity, the pressures calculated via equation (73) in way of
the cavity are valid on the cavity surface as well as on the
undierlying hydrofoil surface and hence may be transferred di-
rectly. .
Similarly, referring to equations (43) and (45), the drag and
moment coefficients may also be calculated by appropriate inte-
grals over the hydrofoil surface. Using the notation defined in
equations (73), (74) and (75), these coefficients are calculated
numerically as .

N
Cp= z il U (76)
k=1
and
N
CM = 2 pkeﬁk X ﬁk (77)
k=1

Here i is the unit normal vector for the kth element taken at
iteration zero, and 7 is the position vector from the origin to the
kth control point, also taken at iteration zero.

At each iteration the quantities ¢, T, Cy, Cp, Cyand VOL are
calculated. Convergence is considered to have occurred when
changes in these quantities, from one iteration to the next, are
sufficiently small. Usually this is taken to be less than 1 percent.

Results and conclusions
Convergence

In the previous section it was mentioned that the present
numerical formulation is exact in the sense that, as the number of
surface elements tends to infinity, and the size of the largest
element approaches zero, the solution converges to that of the
given potential-flow problem. Due to the iterative nature of the
numerical solution technique, it is likely that the number of
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Fig. 7 Convergence, ¢ versus number of iterations, NACA 16-006
section, a = 4 deg, £/c = 0.50, for N = 50, 100, 150, 200

iterations required for convergence will tend to infinity mono-
tonically with the number of surface elements.

In order to ascertain how many surface elements and iterations
are necessary to achieve reasonable convergence, a series of
computations was performed. Figures 7-9 show results for an
NACA 16-006 hydrofoil section at 4-deg angle of attack with a
cavity length of 50 percent of the chord (£/c = 0.50). Figure 7
shows the convergence of the cavitation number, ¢, as a function
of the number of iterations for various numbers of surface ele-
ments. It can be seen that for all cases shown, convergence in
iteration number is achieved with 15 iterations. The final dif-
ference in the cavitation number predicted, using 150 and 200
surface elements, is approximately 0.7 percent. Figure 8 shows
the convergence of the cavity volume with respect to iteration
number. For all cases, 15 iterations are again sufficient for
convergence. The difference in predicted volume between the
N =150 and N = 200 cases is less than 0.7 percent.

These results are typical. A large number of surface elements
is necessary to achieve accurate results. This is most likely due to
the discrete integration scheme used to generate the cavity sur-
face. If the discretization is not fine enough in the leading-edge
region where the flow velocity is changing direction rapidly, the
initial shape of the cavity will be inaccurate and, due to the
integration, the entire cavity shape will be affected.

Figures 7 and 8 also indicate that the number of iterations
required for convergence is a function of the number of surface
elements employed. Figure 10 shows the estimated number of
iterations required for convergence versus the number of surface
elements. This figure was derived from the information in Fig.
7. Itis easily seen that the relationship between the number of
elements and the number required iterations is approximately
linear. Thus to achieve convergence one must use a large num-
ber of elements and a proportional number of iterations.

The accuracy with which the boundary conditions are satis-
fied, at convergence, has also been investigated. This was ac-
complished by calculating the velocities normal and tangential to
the foil-cavity boundary at the control points of the surface
elements. The tangential velocities over the cavity were found to
be constant to within roughly 0.05 percent of the freestream
value. The normal velocities over most of the boundary were
less than 0.01 percent of freestream. The only exceptions to this
occurred at the leading and trailing edges of the cavity. Inthese
regions, where the direction of the velocity changes rapidly, the
normal velocities were several percent of the freestream value.
This is undoubtedly due, in part, to the discrete integration
scheme employed in generating the cavity shape, as the magni-
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tude of these normal velocities decreases with increasing number
of elements.

The accuracy of the solution was also assessed in the following
manner. The output geometry from the partially cavitating
hydrofoil program was employed as the input to a computer
program that assumed the flow was fully wetted; that is, only the
kinematic boundary condition was used. Figure 11 shows the
pressure distribution over an NACA 16-006 section with a cavity
length of 50 percent of the chord at an angle of attack of 4 deg.
This figure was plotted using the output of the iterative partially
cavitating hydrofoil program (PCAV). Figure 12 shows the
pressure distribution under the same conditions, generated by
the fully wetted hydrofoil program (FW) using the geometry
output by PCAYV after 15 iterations. These two figures are seen
to be virtually identical. If the surface velocities over the cavity
predicted by the fully wetted hydrofoil program are compared
with those predicted by the partially cavitating hydrofoil pro-
gram, the maximum error is found to be about 0.5 percent.

The effect of varying the location of the cavity detachment
point was also studied. This was done by ascertaining the loca-
tion of the minimum pressure point in the fully wetted condition
using FW, and, on the basis of this information, altering the
location of the cavity detachment point in PCAV through a
reasonable range of values. The results, for an NACA 16-006
section at an angle of attack of 4 deg with a cavity whose length is
50 percent of the chord, are given in Table 1. The maximum
variation in cavitation number is less than 1.0 percent, while the
maximum variation in cavity volume is about 2.5 percent. If,
however, one considers shorter cavity lengths or thicker foils the
relative variation in these quantities can be much greater. The
effect of the location of the cavity detachment point on cavita-
tion number and cavity volume for NACA 16 series sections of 6,
9 and 12 percent thickness ratios, at 4-deg angle of attack, is
given in Table 2 for a cavity length to chord ratio of 5 percent.
The locations of the fully-wetted pressure minima for these
sections, at this angle of attack, are 0.014, 0.112, and 0.335
percent of the chord, respectively. For the cavity volume in
particular, the relative variation can be quite high, although the

Table 1 Effect of location of cavity detachment point for NACA
16-006 section with a 50 percent cavity length d
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Fig. 12 Pressure distribution NACA 16 = 006 section, = 4deg, £/c=
0.50, from FW

absolute variation is small. This is due to the small cavity vol-
umes involved.

The effect of the location of the cavity detachment point is due
to the fact that if the detachment point is set too far forward on
the section, the cavity free streamline will initially pass through
the locus of the hydrofoil. Thus the effect is greatest on thick
foils (or more accurately, on foils with larger leading-edge radii)
since a larger volume of the foil will be intersected by a cavity
that begins too far forward. If the cavity detachment point is set
too far aft on the hydrofoil, the pressure minimum may no longer
be on the cavity surface but rather on the wetted portion of the
foil upstream of the cavity.

In reality the location of the cavity detachment point will be
somewhat downstream of the location of the fully wetted pres-
sure minimum. This result was determined experimentally by
Arakeri [40]. The data from Table 1 are shown graphically in
Figs. 13 and 14. It can be seen that both the cavitation number
and the cavity volume appear to possess maxima for a cavity
detachment point located slightly downstream of the fully wet-
ted pressure minimum. The significance of these maxima is not
known.

Unfortunately, the proper location for the cavity detachment
point cannot be determined a priori. Thus in view of the above
results, and in consideration of a finite computer budget, all
results presented subsequently have been generated using 200
surface elements and 15 iterations and with the cavity detach-
ment point located at the position of the fully-wetted pressure
minimum.

Results

In an effort to approximate as nearly as possible the exact,
nonlinear, partially cavitating flow past a flat plate, computa-
tions were performed for a 1 percent thick bi-convex foil at
angles of attack of 2and 4 deg. The results are presented in Figs.
15 and 16. Upon comparison with Geurst’s [21] linear theory
results for a flat plate, one notes that, although the nonlinear
theory predicts that the cavity length is no longer solely a func-
tion of a/o, in general the predictions of the linear theory are

Table 2 - Effect of location of cavity detachment point for NACA 16
series sections with 5 percent cavity lengths

NACA 16-006 NACA 16-009 NACA 16-012

s’/e = 0.00014 §’/c = 0.00112 s'/c = 0.00335
s/e ] VOL a VOL o VOL
0.0 207774 0.00023 1.72294 0.00011 1.37925 0.00001
s’/c 2.08881 0.00024 1.82723 0.00016 1.55850 0.00008

s/c g CL Cm VOL
0.0 0.87301 0.53500 0.12983 0.01660
0.00014 0.87513 0.53562 0.12986 0.01670
0.00088 0.87358 0.563518 0.12984 0.01660
0.00176 0.86774 0.53367 0.12979 0.01629
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good. In particular, Fig. 16 shows that, for a 1 percent thick bi-
convex foil, the cavity volume predicted by nonlinear theory is
linearin . To investigate this result further, computations were
made for a 4 percent bi-convex foil at angles of attack of 2 and 4
deg. Results of these computations are shown in Fig. 17, where
it can be seen that for a thicker foil this linearity in « is lost.

To study the effect of hydrofoil section thickness on cavity
volume, computations were made for NACA 16 sections 6, 9 and
12 percent thick at 4-deg angle of attack. Results are shown in
Figs. 18 and 19. For comparison, a computer program which
solves the linearized partially cavitating hydrofoil problem in-
cluding thickness effects [42] was run for the same conditions.
Results of this program are presented in Figs. 20 and 21.

Comparing Figures 18 and 20 one immediately notices that
the effect of section thickness on cavity length in the linear
theory is apparently the reverse of that in nonlinear theory. The
trend of the linear theory curves for short cavities is to be expect-
ed since the presence of the leading-edge singularity in linear
theory requires an infinite cavitation number to reduce the cavi-
ty length to zero. The trend of the curves generated by the
nonlinear theory for short cavities is also to be expected. In this
case there is no leading-edge singularity and one anticipates that
the cavity length will go to zero at a finite cavitation number.
The values of a/¢ for £/c = 0.0 in Fig. 18 were determined by
using the maximum surface velocity found on the hydrofoil in
the fully wetted condition to derive an inception cavitation num-
ber. It should also be mentioned that the nonlinear results
exhibit the same sort of behavior for long cavity lengths as the
linear theory. Namely, the cavitation number tends to increase
for cavity lengths in excess of about 75 percent of chord. It has
been suggested [43] that this is due to the proximity of the
stagnation points at the end of the cavity and the trailing edge of
the hydrofoil.

Figures 19 and 21 show the effect of section thickness on cavity
volume according to nonlinear theory and linear theory, respec-
tively. It is immediately apparent that the linear theory signifi-
cantly underpredicts the magnitude of this effect. For example,
for a cavity length of 50 percent of chord the nonlinear results
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- predict that increasing the thickness ratio from 6 to 12 percent

decreases the cavity volume by over 40 percent. The linear
theory, in contrast, predicts a decrease of less than 11 percent.
Also, for a 6 percent thick foil with this cavity length, the nondi-
mensional cavity volume determined by the nonlinear theory is
about 0.018. The corresponding result from the linear theory is
about 0.023. Thus the linear theory overpredicts this cavity
volume by approximately 77 percent.

Another approach which has been put forth in an effort to
predict the effect of thickness is the “short cavity” theory of
Tulin and Hsu [39]. Instead of perturbing the freestream flow,
as is done in conventional linear theory, Tulin and Hsu perturb
an exact solution for the fully wetted flow about the hydrofoil.
Results gleaned from their work [39] are presented in Fig, 22.
To facilitate the comparison with their results, the data already
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presented in Figs. 18-21 have been reshuffled into the format
used by Tulin and Hsu. Figures 23 and 24, therefore, present
VOL/c2 versus o/ ¢ as predicted by the nonlinear theory and the
linear theory with thickness, respectively.

Upon comparison of these three figures, it is readily apparent
that the effect on cavity volume due to foil thickness, as indicated
by the linear theory, is the opposite of the effect predicted by the
other two theories. For a/o Z 0.06, the linear theory predicts
that increasing the foil thickness will increase the cavity volume.
Both the present nonlinear theory and the Tulin/Hsu theory,
however, predict that the cavity volume will decrease as section
thickness increases, regardless of the value of a/0.

Tulin and Hsu’s theory indicates a drastic effect of section
thickness on cavity volume. If one examines their results for a/ o
= .07, for example, one sees that increasing the thickness ratio
from 6 to 9 percent yields a reduction in cavity volume of about
80 percent. If one increases the thickness ratio from 6 to 12
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percent, the reduction in cavity volume is virtually 100 percent.
The present theory is more conservative in its predictions. For
a/e = 0.07, it predicts only a 33 percent reduction in cavity
volume when the section thickness ratio is raised from 6 to 9
percent. Similarly, raising the thickness ratio from 6 to 12
percent yields about a 64 percent loss of cavity volume.

In order to determine whether this “thickness effect” is truly
due to section thickness or is actually due to the change in
leading-edge radius with changing thickness ratio, further com-
putations were performed. Three new hydrofoil sections were
generated for these computations using an analytically defined
series due to Kerwin [56] which allows the section thickness ratio
and the leading-edge radius to be set independently. All three
sections are 6 percent thick and their leading-edge radii are
0.176, 0.352 and 0.704 percent of the chord, respectively. These
shall henceforth be referred to as Kerwin Sections A, B and C.
Section A has the same thickness ratio and leading-edge radius as
an NACA 16-006 section and Section C has the same leading
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Table 3 Effect of leading-edge radius for a constant thickness ratio
on Kerwin series sections

a=4deg
Kerwin A Kerwin B Kerwin C

f = 0.00176 f = 0.00352 lc’— = 0.00704

%' = 0.00014 %' = 0.00124 ’:' = (.00359
/e o VOL o VOL o
VOL
0.05 2.01461 0.00022 2.00041 0.00017 1.94714 0.00011
0.50 0.87775 0.01618 0.88969 0.01620 0.90888 0.01639

Table 4 NACA 16 series sections results for 5 and 50 percent cavity

lengths
a=4deg
NACA 16-006 NACA 16-009 NACA 16-012

-‘cl = 0.00176 f = 0.00396 -:l = 0.00703

f = 0.00014 ’f =(.00112 %’ =0.00335
£lc a VOL o VOL '
VOL
0.05 2.08881 0.00024 1.82723 0.00016 1.55850 0.00008

0.50 0.87513 0.01670 0.86924 0.01305 0.86255 0.00954

radius as an NACA 16-012 section. Thus a comparison of the
relative effects of section thickness and leading-edge radius can
be made.

The computational results for the Kerwin sections with cavity
lengths of 5 and 50 percent of chord are given in Table 3.
Corresponding results for the NACA sections are given in Table
4. Tt can easily be seen that for a 5 percent cavity length the
results for both series are comparable. For a cavity length of 50
percent of the chord, however, the results differ widely. In this
case the results for the Kerwin sections remain fairly constant
with only a slight increase in cavity volume with increasing
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Fig. 28 VOL/c? versus a/a, NACA 16 serigs sections, linear results
with thickness, o = 4 deg
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Fig. 25 {/c versus a/g, camber results, k = design lift coefficient,
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leading-edge radius. The NACA 16 series sections, however,
exhibit a dramatic decrease in cavity volume with increasing
thickness ratio. These results indicate that short cavities are
controlled by the leading-edge radius. Long cavities, that is,
cavities whose length is much, much greater than a leading-edge
radius, are governed by the section thickness itself and not the
leading-edge radius. From a practical point of view this latter
effect is the more important one, since long cavities necessarily
entail greater cavity volume.

The effect of camber has also been investigated with the
present nonlinear theory. In order to compare results with Tulin
and Hsu, the computations were carried out for cambered foils
constructed from an a = 0.8 meanline and an NACA 16-006
thickness section. Three hydrofoil sections were studied. They
differed only in the amount of camber, the design lift coeffi-
cients being 0.0, 0.1 and 0.2, respectively. Results of these
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Fig. 26 VOL/c2 versus £/c, camber results, k = design lift coefficient,
NACA 16-006 section and a = 0.8 meanline, a = 4 deg
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computations are presented in Figs. 25-27.

Figure 25 indicates that, over the primary range of interest 0.0
< 4, < 0.75, an increase in camber yields an increase in cavity
length. Figure 26 shows that if one holds cavity length constant,
an increase in camber yields a decrease in cavity volume. If,
however, the operating conditions are held constant, that is con-
stant &/ ¢, increasing the camber increases cavity volume. Using
the results presented in Fig. 27, for example, one finds that, for
a/o = 0.07, doubling the camber from a design lift coefficient of
0.1 to a design lift coefficient of 0.2 raises the predicted cavity
volume by almost 30 percent.

Corresponding results obtained by Tulin and Hsu [39] are
presented in Fig. 28. Their results indicate that for a/¢ = 0.07
the same doubling of the camber, as discussed above, yields as
increase of cavity volume of more than 70 percent.

A further comparison may be made if one considers Geurst
and Verbrugh’s [22] theory for a zero-thickness partially cavitat-
ing parabolic camber line. These results are shown in Fig. 29 for
parabolic camber lines at 4-deg angle of attack with design lift
coefficients of 0.0, 0.1 and 0.2. The increase in cavity volume
achieved by doubling the design lift coefficient from 0.1 to 0.2
for a/e = 0.07 is approximately 11 percent according to this
theory. ’

For any theory to be considered valid its results must compare
favorably with ‘experimental results. Unfortunately, for the
present case, experimental data are lacking. Meijer {41] per-
formed experiments on a 4 percent thickness ratio plano-convex
section and a 4 percent thickness ratio bi-convex section. Wade
and Acosta [44] studied the cavitating flow past a 7 percent thick
plano-convex section. Uhlman and Jiang [45] investigated a
partially cavitating plano-convex section of 6 percent thickness
ratio.

Comparison of the present non-linear results, % versus a/o,
for a 4 percent thick bi-convex foil with Meijer was unilluminat-
ing. The experimental scatter is such that, although the nonlin-
ear results appeared slightly better, nothing definitive could be
said (see Fig. 30).

The only cavitating round-nosed hydrofoil data available ap-
pear to be three data points due to Shen and Peterson [58,59] (see
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Fig. 27 VOL/c? versus a/a, camber results, k = design lift coefficient,

NACA 16-006 section and a = 0.8 meanline, o = 4 deg
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also Stern {60]). Comparisons of these experimental results with
the results of the present nonlinear theory and with the results of
the linear theory including thickness effects are given in Table 5.
The predictions of the present nonlinear model are seen to be
excellent.

Further results generated by the present nonlinear theory,
particularly those concerning lift and moment coefficients, have
been compiled in Appendix D of Uhlman {62]. Corresponding
linear results, obtained from Geurst and Verbrugh [22] and Van
Houten [42), are contained in Appendix E of the same work.

Conclusions

The present program, PCAV, which determines the potential-
flow solution for the nonlinear two-dimensional partially cavitat-
ing hydrofoil problem, has been shown to converge to a single
solution given a sufficient number of surface elements and a
sufficient number of iterations. It has also been shown that once
convergence is achieved the boundary conditions on the foil-

_cavity boundary are properly satisfied. Theorems in potential-

flow theory then state that the unique solution has been found.
The absence of any exact analytic solutions to this problem
unfortunately precludes any direct comparison with the present
numerical approach.

The comparison of the present nonlinear results with the nu-
merical linear theory of Van Houten [42] brings to light several
salient facts. For section thickness ratios of 6 percent or greater
itis seen that the linear theory underpredicts the effect of section
thickness on cavity volume. Thus linear theory significantly
overpredicts the cavity volume of foils with thickness. In fact,
for constant a/o, linear theory indicates an increase of cavity

Table5 Comparison of experimental and numerical results for a
modified Joukowski section

£/c =0.40 £/c =0.30 £/c =0.25
a=43deg a=43deg a=38deg
Experiment c=1.13 =121 ¢=1.13
Nonlinear
theory 111 1.20 1.14
Linear theory
with thickness 1.37 1.53 1.51
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Fig. 29 VOL/c? versus a/g, parabolic camber, k = design lift coeffi-
cient, a = 4 deg (Geurst and Verbrugh)

volume with increasing section thickness in contradiction to the
trend predicted by the present nonlinear theory. This suggests
that linear theory may best be utilized by neglecting the effect of
section thickness altogether. Linear theory also approaches the
wrong a/¢ limit for short cavities on round-nosed foils. Al-
though the cavity volumes at these short cavity lengths are small,
this indicates that any attempt at modeling inception will, of
necessity, involve a nonlinear theory.

It is the author’s opinion that Tulin and Hsu’s theory [39]
overpredicts the effect of section thickness on cavity volume.
Their theory suggests that doubling the section thickness could
often virtually do away with cavitation entirely. Tulin and Hsu
also indicate a similar effect for camber. The present theory
indicates that the effect of increased section thickness in reduc-
ing cavity volume is significant, but not as drastic as that predict-
ed by Tulin and Hsu. Similarly, an increase in camber will also
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Fig. 30 Meijer’s experimental data for a 4 percent bi-convex foil, @ = 2
deg, 4 deg, and 6 versus nonlinear theory and linear theory
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reduce cavity volume, but again not as drastically as Tulin and
Hsu indicate.

Recommendations

The comparisons encountered above are between an exact
nonlinear solution and various approximations.
with experimental data is virtually nonexistent. However, be-
fore any theory can claim an element of truth it must be validat-
ed by comparison with experimental results. In the present case
experimental results are sorely lacking. This situation must be
remedied. In particular, accurate measurements of cavity vol-
ume must be obtained. ‘

Further analytic results would also be useful. In particular,
the linear theory for a partially cavitating bi-convex hydrofoil
including thickness effects could be used to investigate the effect
of section thickness on cavity volume and at the same time
validate corresponding numerical results.

An extension of the numerical nonlinear technique to a three-
dimensional hydrofoil would also be worthwhile. Such an ex-
tension would allow one to study to what extent finite span
effects mediate the effects of thickness and camber on cavity
volume.

In problems involving cavitation-induced vibration it is the

_volume velocity of the cavity, rather than the volume itself, that
is of concern. Although the present theory could be readily
employed in a quasi-steady analysis of such problems, an exten-
sion of the technique to time-dependent flows would be of great
value.

The problem of cavitation inception is also of considerable
interest. The present technique, or a similar local extension of it,
could be useful in investigating this problem. However, due to
the small cavity lengths and volumes involved, knowledge of the
exact location of the cavity separation point would become im-
portant. Therefore some criterion for determining this location
would have to be found. The development of such a criterion
would presumably require a local viscous analysis about the nose
of the hydrofoil.
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Appendix

On the Representation of the Velocity Field by a
Distribution of Vortices Over the Boundary

Consider the steady flow of an unbounded ideal fluid past a closed
two-dimensional body. Such a flow may be described by a velocit
potential, .  One may then introduce a disturbance velocity potential,
¢, such that

e=U-7+¢ (78)
where U represents the freestream velocity and # = xi + yj is the position
vector. This disturbance potential satisfies the condition that

60 as r—w (79)
Hence, from Green’s second identity it can be shown that ¢ may be
represented by distributions over the fluid boundary, 9D, of sources and
normal dipoles of the form )

=1 [ [%¢ — ¢ 2én(r)]
L LD {bn tn) - AL 4 (80)
If the circulation about the body is zero, then ¢ may be expressed as a
unique distribution of solely sources or a unique distribution of solely
normal dipoles (see Lamb [46], pp. 59-61).

If, however, the circulation about the body is nonzero, then the
velocity potential becomes multivalued and a barrier or auxiliary flow
boundary must be introduced into the fluid to render it single-valued
once again (see Fig. 31). In fact, the circulation about the body is

BARRIER

HYDROFOIL
Fig. 31

exactly equal to the jump in potential across this barrier. Thus, if ¢ is to
be expressed in terms OF boundary distributions of sources and normal
dipoles, then there must exist a constant distribution of normal dipoles on
the barrier with the density of the dipole moment equal to the circula-
tion.

It is no longer possible to express ¢ solely in terms of sources. It is,
however, possible to use Lamb’s interior flow arguments to express ¢ in
terms of normal dipoles alone. Thus

=L w-p2 A¢ (2
= L _@=®Zen(nds + 2 Lan[en(r)]ds (81)

where @ is the potential in domain D~ such that

26 _2¢

on  on on dD

(82)

and A¢ is the jump in tential across the barrier. One may now
introduce the multivalued function
O(x,y) = arctan(y/x) (83)

This is the conjugate harmonic function of £n(r) and hence the Cauchy-
Riemann equations state that

_20

]
anlt’n(r)] o (84)
Equation (81) may therefore be written as
=1 L P A [0 .,
e I R R R
(85)
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One may perform an integration by parts on equation (8) to yield

2

1 -
= - $)6 6
¢-2 L 2 ¢ — ¢)0ds (86)

which expresses the velocity potential in terms of a distribution of
vortices over the body boundary dD. The barrier now serves the pur-
pose of defining which branch of the multivalued function © is under
consideration. i

The simplest manner of demonstrating that the flow about a body
with nonzero circulation can be represented in terms of a boundary
distribution of vortices alone is to consider the stream function ¥. If U
and V denote the x and y components of the free stream, respectively,
then one may define a disturbance stream function, ¥, by

¥=(Uy—-Vx)+y¢ 87)

This disturbance stream function satisfies the conditions necessary to
_apply Green'’s second identity and hence may be written as

y=1 LD {%ﬁ en(r)—ﬁ%&n(r)}}ﬁ (88)

2%
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The above representation expresses ¥ in terms of boundary distributions
of vortices and tangential dipoles. If there is no flux from the body
boundary, then the boundary is a streamline and the stream func-
tion is single-valued. The arguments of Lamb concerning interior flows
may then be applied. In particular, consider an interior stream function
Y. 'Inthe region D*, { satisfies

L[ [¥pn-32
0 o LD { oh In(r) - o [en(r)]}ds (89)
where 9/0it = 9/0n. If one now requires that
=y ondD (90)
then equations (89) and (90) may be combined to yield
1 [ [pY_d g
¥ - LD {a" an} On(r)ds, inD (91)

which was to be shown.

1t should be noted that whether or not the velocity potential (or stream
function) is multivalued, the associated velocity f)i,e,l)g is single-valued.
Hence, since the present work deals only with velocities, the question of
multivaluedness does not arise.
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