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The hSurface Singularity or Boundary Integral Method Applied to

Supercavitating Hydrofoils

James S. Uhlman, Jr.’

The surface singularity or boundary integral method is formulated numerically for the problem of the
fully nonlinear potential flow past a supercavitating flat-plate hydrofoil. An iterative scheme is employed
to locate the cavity surface. Upon convergence, the exact boundary conditions are satisfied on the foil-
cavity boundary. The predictions of the nonlinear model are compared with those generated by linear
theory and with experimental data. In contrast to the resuits for the partialy cavitating case, the pre-
dictions of the linear theory for supercavitating flat-plate hydrofoils are seen to be excellent.

Introduction

IN A RECENT PAPER, the author discussed the application of
the surface singularity or boundary integral method to par-
tially cavitating two-dimensional hydrofoils [1,2}.%2 In the
present paper, the case of supercavitating hydrofoils is treated
with the same method.

The study of supercavitation may be said to have begun
with the development of the hodograph method by Helm-
holtz and Kirchoff in the nineteenth century. Their method
was extended to curved bodies by Levi-Civita and to finite
cavitation numbers by Efros [3] and others (see Gilbarg and
Serrin [4] and Shiffman [5,6]). All of these methods were
nonlinear in the sense that the exact kinematic and dynamic
potential-flow boundary conditiohs were satisfied on the
cavity boundary. These methods also required a cavity ter-
mination model. The models most often used were the Ria-
bouchinsky flat-plate cavity termination and the reentrant
jet cavity termination.

Linearized theories were developed starting with Tulin [7]
in response to the mathematical intractability of the exact
theories. The linearized theories were extended by Tulin [8],
Geurst [9], and Hanaoka [10], among others. More recently,
numerical implementations of the linear model have found
favor and extensions to three-dimensional unsteady flows
have been developed (see Jiang {11] and Lee [12]).

These numerical extensions have, however, raised ques-
tions concerning the accuracy of the linearized theory. Of
particular interest is the ability to predict unsteady cavity
volume velocities and accelerations. In order for one to pre-
dict these quantities, the cavity volume predictions must be
quite accurate.

The present paper presents an exact nonlinear numerical
potential-flow model of the supercavitating flow about a two-
dimensional hydrofoil. The predictions of this exact model
are compared with those of the linear theory in order to as-
certain the accuracy of the linear approximation. In contrast
to the partially cavitating case [1,2], it is found that the
agreement is excellent. The results of both theories are also
* compared with the experimental data of Wade and Acosta
[13]. It is found that the agreement between theory and ex-
periment, in general, is quite good.

'Naval Underwater Systems Center, Newport, Rhode Island.

*Numbers in brackets designate References at end of paper.
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Mathematical formulation

Following Uhlman [1], consider the unbounded, steady, ir-
rotational flow of an inviscid, incompressible liquid past a
cavitating hydrofoil. The flow is then a potential flow and
hence possesses a potential function, ®, which in the fluid
satisfies Laplace’s equation

Vi =0 o))
A disturbance potential, ¢, can be defined by
®=U.-r+¢ )

where U. is the freestream velocity vector and r is the po-
sition vector, r = xi + yj. All quantities may be made di-
mensionless with respect to p, [U.| and ¢, where ¢ is the chord
of the hydrofoil. Unless otherwise stated, it shall henceforth
be assumed that all terms are dimensionless. Equations (1)
and (2) still hold, yet now in dimensionless form.

It is shown in Uhlman [1] that the disturbance potential,
¢, and the disturbance velocity

V=Vé 3)
may be expressed in terms of an integral around the foil-
cavity boundary which is linear in the unknown surface vor-
ticity, v. A similar formulation is employed here except that
in the present paper

: U,=1i 4
and any angle of attack of the foil is expressed in the body
shape (see Fig. 1).

Boundary conditions

Following reference [1), the kinematic condition on the foil-
cavity boundary, C, is

ad
—=0 on C 5)
an
or
n-V=-n-U, on C (6)

where n is the outward unit normal vector to the boundary.
It should be noted that since the disturbance velocity, V, is
a linear function of the unknown surface vorticity, v, this
kinematic boundary condition is also linear in 4.
Similarly, a dynamic boundary condition must be applied
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Fig. 1 Representative illustration of the supercavitating hydrofoil problem

on the cavity boundary. Using Bernoulli’s equation, it may
be shown that this condition becomes

Q:=1+0c )]
where o is the cavitation number and
Q=|U.+V]| 8

This dynamic boundary condition may be reexpressed as
@-V1i+ao=0 9)

in order to yield an expression which is linear in the un-

knowns y and V(1 + o). The solution procedure then re--

quires that the cavity length be given and proceeds to find
the cavity shape and the values of the above unknowns. For
a given hydrofoil, this approach then yields the cavitation
number as a single-valued function of the cavity length.

A detachment condition of some form is required at the
trailing edge of the foil, in place of a Kutta condition, in
order to set the circulation. In the general case, a leading-
edge detachment condition would also be necessary. How-
ever, such a condition is beyond the scope of potential-flow
theory and may be replaced, in the case of a flat-plate hy-
drofoil, by assuming that the upper cavity surface springs
from the leading edge. The trailing-edge detachment con-
dition for the supercavitating case is significantly different
from the Kutta condition employed in the partially cavitat-
ing case. This is due to the fact that in a supercavitating
case, only the lower surface of the hydrofoil trailing edge is
wetted. The appropriate condition in this case is that the
boundary streamline have a continuous first derivative. This
condition is necessary if the dynamic boundary condition is
to be satisfied everywhere on the streamline bounding the
cavity. Equivalently, one could require that the surface ve-
locity be continuous at the trailing edge of the hydrofoil. This
condition may be expressed as

hm tA . (Uw + VA) = hm tg . (Uoo + VB)
A-T.E. B—T.E.

where A and B represent points on the boundary streamline
on opposite sides of the trailing edge (see Fig. 2).

t = tangent vector
r = position vector
a = angle of attack

p = fluid density
¢ = hydrofoil chord length
U, = freestream velocity
V = disturbance velocity
Q@ = total velocity magnitude
n = normal vector into fluid
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(10)-

Nomenclature

o = cavitation number, 2(p — p.)/pU*
€/c = cavity length to chord length ratio
C, = lift coefficient, 2L /pU’%

FREE STREAMLINE

Fig. 2 Local trailing-edge fiow for a supercavitating hydrofoil

A cavity termination model is also necessary, in this non-
linear model. In a manner quite similar to that employed in
reference [1], a Riabouchinsky cavity termination model is
adopted. The cavity termination wall for the supercavitating
case is situated perpendicular to the free stream. As in the
partially cavitating case, its height is initially unknown and
a kinematic boundary condition is satisfied on its surface.
The height is determined as part of the solution and is ex-
actly that height required to connect the ends of the free
streamlines springing from the leading and trailing edges of
the hydrofoil (see Fig. 1).

The boundary conditions (6) and (9) are exact. Together
with the trailing-edge detachment condition, the cavity ter-
mination model, and the given cavity length, they yield suf-
ficient information to determine the unknown surface vor-
ticity distribution, cavitation number, and cavity shape. There
exist, however, alternate formulations of these boundary
conditions which are better suited to a numerical solution.
These alternate formulations of the boundary conditions are
discussed in references [1] and [2]. The formulations em-
ployed in references [1] and [2] for the partially cavitating
case are employed similarly for the supercavitating case
presently under consideration. The solution procedure then
consists of applying the kinematic boundary condition, (6),
on the wetted portions of the foil boundary and the dynamic
boundary condition, (9), on the assumed cavity boundary. The

C) = moment coefficient, 2M /pU*%c®
Vol = dimensionless cavity volume,
Volume/c?
@ = total velocity potential
¢ = disturbance velocity potential
v = surface vorticity distribution
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boundary-value problem is then solved and the unknowns,
v and V(1 + o) are obtained. The kinematic boundary con-
dition over the cavity boundary is then employed in order
to obtain a better estimate of the cavity shape. This proce-
dure is then repeated until the cavity shape has converged.
See Uhlman [1] for a more thorough discussion.

Other quantities of interest

From the solution to the above boundary-value problem,
other quantities of interest may be derived. In view of the
fact that these derivations may be found in references [1]

and [2], they shall not be reproduced here. Instead, we shall |

merely enumerate the quantities which subsequently will be
presented: cavity volume (Vol), lift coefficient (C,), moment
coefficient (Cy). In addition to these, the quantities cavity
length (£), angle of attack (a), and cavitation number (o),
which are fundamental to the solution, shall be of most in-
terest.

Results

" The present numerical formulation is exact in the sense
that as the number of surface elements tends to infinity and
the size of the largest element tends to zero, the solution
should converge to that of the given potential-flow problem.
As discussed in reference [1], tests have been performed in

“order to determine the number of elements and iterations
necessary to achieve convergence. The results shown in ref-
erence [1] are typical of the supercavitating case as well.
Most of the data presented herein were calculated using 200
surface elements and 15 iterations. The only exceptions to
this occur at long cavity lengths where up to 25 iterations
were required.

Calculations in the supercavitating regime were per-
formed only for the case of a flat plate hydrofoil. Figure 3
shows the final converged cavity shape for a supercavitating
flat plate at 4-deg angle of attack and a cavity length of 1.4
times the chord length. The modified Riabouchinsky cavity
termination model is apparent at the cavity trailing edge.
Figure 4 shows the dimensionless pressure distribution as-
sociated with the cavity shape shown in Fig. 3. As expected,
the stagnation points at the leading edge of the flat plate
and at the trailing edge of the cavity are evident. There is
no stagnation point at the trailing edge of the hydrofoil, in
accordance with the trailing-edge detachment condition dis-
cussed above.

Figure 5 shows the dimensionless cavity length, {/c, as a
function of o/c for a supercavitating flat-plate hydrofoil. In-
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Fig. 3 Converged cavity shape for a supercavitating flat-plate hydrofoil at 4-
deg angle of attack with a cavity length of 1.40 after 25 iterations

18

PRESSURE COEFFICIENT

1.0
2.5
~cP _ Y
2.0  —
-8.5
- '8e ez e+ o6 6.8 1.0 1.2 1.4
CHORD

Fig. 4 Pressure distribution over a supercavitating flat-plate hydrofoil at 4-
deg angle of attack with a cavity length of 1.40 after 25 iterations

cluded are the present nonlinear results, the predictions of
the linear theory of Geurst [9] and the experimental data of
Wade and Acosta [13]. It is evident that the theoretical pre-
dictions are in excellent agreement with one another and
are consistent with the experimental data.

Figures 6 and 7 show the corresponding results for the lift
and moment coefficients, respectively. Both quantities have
been normalized with respect to their linear theory zero cav-
itation number limits. The moment has been taken about
the midchord of the hydrofoil. The agreement between the
two theoretical approaches is good. The agreement of the
theoretical predictions with the experimental data of Wade
and Acosta [13] for the lift coefficient is also quite good. The
agreement of the predicted moment coefficient with the ex-
perimental data is, however, unsatisfactory. The reasons for
this disagreement are not clear.
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Fig. 5 Cavity length, £/c, versus o/o for a supercavitating flat-plate

hydrofoil. The theoretical predictions of Uhiman {1] and Geurst [9)], and the
experimental data of Wade and Acosta [13] are presented
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Fig. 6 Normalized lift coefficient, C, /(wa/2), versus o/c for a

supercavitating flat-plate hydrofoil. The theoretical predictions of Uhlman [1]
and Geurst [9], and the experimental data of Wade and Acosta [13] are

presented
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Fig. 7 Normalized moment coefficient, Cy/(3wa/32), versus a/a for a
supercavitating flat-plate hydrofoil. The theoretical predictions of Uhlman [1]
and Geurst [9], and the experimental data of Wade and Acosta [13] are

Finally, a comparison between the theoretical predictions
for the cavity volume is presented in Fig. 8. Again the agree-
ment is seen to be excellent for sufficiently large a/o or,
equivalently, for sufficiently large €/c. It should be noted
that the linear theory predicts that the cavity volume be-
comes unbounded as the length of the cavity approaches one
hydrofoil chord length from above.

Conclusions

As is evident from the figures presented herein, the pre-
dictions of the two theoretical approaches are in good agree-
ment for values of the parameter «/o exceeding roughly 0.3,
corresponding to a cavity to chord length ratio, €/c, of ap-

~proximately 1.30. For values of this parameter less than 0.3
the moment coefficient, Cy, and cavity volume, Vol, pre-
dicted by the linear and nonlinear theories diverge, al-
though the cavity extent, €/c, and lift coefficient, Cy, are
still in good agreement.

The agreement of both theories with the experimental data
is, in general, satisfactory. The predicted values of both the
cavity extent, £/c, and the lift coefficient, C;, are readily
seen to be in excellent agreement with the data of Wade and
Acosta [13] over the range examined here (see Figs. 5 and
6). The values predicted by the two theories for the moment
coefficient about the midchord of the hydrofoil, Cy, are,
however, not in good agreement with the corresponding ex-
perimental data (Fig. 7). The cause for this disagreement is
unknown, although the general agreement between the two
theories and the experimental data otherwise suggest that
the problem may lie elsewhere than with the theory. No ex-
perimental data have been plotted for comparison with the
theoretical predictions of the cavity volume due to the fact
that no such data exist.
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Fig. 8 Normalized dimensionless cavity volume, Vol/ma, versus a/c for a

supercavitating flat-plate hydrofoil. The theoretical predictions of Uhiman [1}
and Geurst [9] are presented
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As shown in Fig. 8, the predictions of the linear theory
and the nonlinear theory are seen to be in substantive
agreement for /o greater than about 0.3 or ¢/c greater than
about 1.30. The disagreement of the cavity volume predic-
tions for short cavity lengths is to be expected, since the lin-
ear theory does not even predict a finite value for this quan-
tity when €/c equals 1.00.

In general, it appears that the linear theory of Geurst [9]
for supercavitating flat plate hydrofoils is in excellent
agreement with the nonlinear theory of Uhlman [1]. The only
exception to this conclusion occurs at short cavity lengths.
This result is in sharp contrast to that obtained for partially
cavitating hydrofoils (see Uhlman [1,2]) wherein the predic-
tions of the linear theory were suspect. The agreement of
both theories with the experimental data of Wade and Acosta
(13] is also quite good with the exception of the moment
coefficient. Thus it may be concluded that the linear theory
for supercavitating flat-plate hydrofoils may be employed with
confidence in the prediction of forces, cavity extents, and
volumes.
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