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AN INTEGRAL EQUATION FORMULATION OF THE

EQUATIONS OF MOTION OF AN INCOMPRESSffiLE FLUID

INTRODUCTION

In the course of various investigationsit became apparent that it might be pos-
sible to express the equations of motion of an incompressible fluid solely in terms
of integral equations. In fact, it turns out to be possible to derive such a set of cou-

pled integral equations in what may be called the vorticity-velocity-enthalpyformu-
lation. This report 'contains a derivation of these equations and a discussion of
their properties.

The formulation employed here is similar to that used by Howe (reference 1)

in his investigations of acoustic wave equations. In that work Howe employed a

formulation in which the acoustic pressure was replaced by a stagnation enthalpy

that included the dynamic pressure term. The present fqrmulation generalizes the

incompressible form of the stagnation enthalpy integral equation to include the

viscous term and formulates the rest of the equations of motion in terms of inte-

gral equations as well. Various mathematical manipulations are then carried out on

these equations to render them in their final form.

MATHEMATICAL FORMULATION

Consider the flow of an incompressible fluid in both bounded and unbounrled

domains. The velocity may then be expressed as the sum

(1)

where in an unbounded fluid domain u is the disturbance velocity and U00 is the

freestream velocity (Uoo= Uoo(t)), and in a bounded fluid domain u is the total

velocity and U00 may be set to zero (see figures 1 and 2 for illustrations of bounded
and unbounded domains). The governing differential equations are then, t!1~conti-

nuity equation
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Figure 1. Bounded Fluid Domain

Figure 2. Unbounded Fluid Domain with the "Surface at Infinity"



v . u = 0, (2)

and the Navier-Stokes equations

) Vpa(u...+u + (u +u) .V U = - - +vV~.
at'" p (3)

The Navier-Stokes equations may also be written as

a(u ...+u) + VB _ (u... +u) x (jj)= -vV x (jj),at (4)

where the specific stagnation enthalpy B is defined as

B = P - pco +! [(u...+u) . (U...+u) - Uco.U...],2 (5)

and

(jj)= Vxu (6)

is the vorticity.

The usual conditions on the flow boundaries are the no-flux boundary condi-
tion

.n .u = n. UBon S, (7)

"

and the no-slip boundary condition

n x U = n x UBon S, (8)

where S is the boundary of the fluid domain V, and uB is the velocity of the

boundary. For unbounded flows there is also a condition at infinity that may be

expressed as
3
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u = o(~) , as r -+ to.
(9)

The derivation of the integral equation formulation requires two integral iden-

tities. The first identity is the vector identity (reference 2):

{3a= -f [(n'a)GoGx(nxa)]dSs

o Iff [Gx(Vxa) - (V.a)G]dV, (10)
v .

where

{

4'77"in Y

(3 = 2'77" on S,o in Yc
(11)

and G is any vector Green's function of the form

r
G = - +H(r),r3

(12)

where H(r) is a regular vector function and r = x -C. This identity holds for any
vector field that is differentiable and for which the integrals exist. For reasons

that will become clear subsequently, it shall be assumed that the curl of G is always
zero.

The second integral identity is a generalization of Green's third identity (refer-

ence 3):

M = ff (~ G -,p~ )dS -Iff V2,pGdV,
s v

(13)
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where G is any scalar Green's function of the form

1
G = -+ H(r),r (14)

and H(r) is a regular function. This identity holds for any scalar field that is differ-
entiable and for which the integrals exist.

The integral equations will be derived for the case of a bounded flow domain.
If an unbounded flowdomain is under consideration, care must be taken when

considering the contribution of the flowboundary "at infinity." In that case the

integrals over the "surface at infinity" may be eliminated by assuming that the dis-

turbance velocity and the vorticityvanish sufficientlyfast at large distances and by
defining the stagnation enthalpy as in equation (5) so that it, too, goes to zero at
infinity .

From the integral identity (10) and the fact that

V' (I) = V' (V xu) = 0, (15)

one immediately finds that

f3u = - § [(n.n)G -Gx(nxu)]dS -fffGx ",dV,s v

(16)

which expresses the velocity field in terms of the vorticity in the fluid domain and a

boundary contribution. This equation is merely a generalization of the Biot-Savart

law. Similarly, equation (3) may be rewritten as

1 [ a(u...+u) ]VX(I)= - (U...xu)X(I)-, -VB.v at (17)

Therefore, the integral identity (10) yields

{3", = - § [G(n' "')- Gx (nx '" )]dSs

+ ~Iff Gx [a(~~+n) - (U~+u) x ",+VB]dV.v
(18)

5



However, since

VBxG = V x (BG) - BVxG,

= Vx (BG), (19)

where it has been assumed that the curl of the vector Green's function G is zero,

one finds that the enthalpy is required only on the boundary of the fluid domain,

and equation (18) becomes

{3~ = - § [G(n-~) - Gx(nx~)]dS + ~ §BGXndS
s s

+ ~III Gx[a(u,:+n). (U~+U)X~]dV_ (20)v

Note that the time derivative may be expressed as a material time derivative, yield-
ing

{3~ = - § [G(no~). Gx(n x ~)]dS+ i § BGxndSs s

+ iIII Gx{D(UD'tn) -~ V[(U~+u)0 (U~+U)]}dV; (21)v

or, operating on the gradient term in a manner similar to that employed in equa-
tion (19), one finds

. .

{3~ =. § [G(n-~)' Gx(n x ~)]dSs

+ ~ § [B. ~ (U~+u)o (U~+u)]GxndSs

+ ~III Gx D~:+U)dVo (22)v

(See Hildebrand(reference4) for the applicablevectoridentities.)

6
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Finally, to obtain an equation for the specific stagnation enthalpy, note that if

the divergence of equation (4) is taken, one is left with

(23)

Similarly, equation (4) can be employed to show that on the boundary

oB
I = n. [_ o(U...+u) + (U...+u)x ~+vV~],ons at

= n.[ - o(U~+u) + (Uoo+u) x ~ -vV X ~].

(24)

Hence, employing integral identity (13) and using expressions (23) and (24) derived
above, one finds that

/3B+ § B ~: dS =§ {-no iJ(U;t+U)+n° [(Uw+u) x..] - vn°(V X")}GdSs s

-III Vo[(Uw+o)x ..]GdVov

Employing the identities

(25)

(Ve x~)G = Ve .((UG)+VGx~,

Ve .(ux~)G = Ve .[(ux(U)G]+VG.(ux~),

(26)

and the' theorems of Gauss and Stokes, one can find the third and fourth terms on

the right-hand side of equation (25) yield

-vi (n °Vx ..)GdS ~ -v[§ ooV x (..G)dS - § no(VGx ..)dS].s s s

= -v [f ..GodS -§ no(VG x ..)dS].c s

= v§ 0 o(VGx ..)dS,s

(27)

7



and

III {V.[(U~+u) x...]} GdV =III V.{[(U~+u) x ...]G} dVv v

- III VG. [(U~+u) x ...]dV,v

= § u.fi(U~+U)X...]G}dSs

-III VG. [(U~+u) x... ]dV. (28)v

Therefore, equation (25) becomes

J( aG J([
a(u..+u)

]
I3B+JJ' B an dS = JJ' -n ° at G+vn °(VGx (I)) dSs s

+IIfVG. [(U~+u)x ...]dV,v

(29)

or, since

no(VGxQ)) = -VGo(nxQ)), (30)

one finally arrives at the integral equation for the enthalpy:

J( aG J([
a(u..+u)

]
I3B+ JJ' B an dS = -JJ n° at G + vVG° (n x Q)) dSs s

+ IfIVG. [(U~+u)x ...]dV.v

(31)

8



Therefore, the set of coupled integral equations in the vorticity-velocity-enthalpy
formulation is, for the case of general boundary motion,

{3u = - § [en on) G - G x(nxu)]dS -IIIGx OiIdV, (32)s v
and

(30i1= - § [G(n 0 Oil) -Gx(n X OiI)]dS + ~§ B (Gxn)dS
s s

+ ~IIIGx r(U~+U)- (u.+u)x Oil]dV,
v

(33)

and

J[ aG J[
[

a(uco+u)
]I3B+JJ B an dS = -JJ n° at G+vVGo(nxCl))dSs s

+ III VG. [(U.+u) x OiI]dV.v

If the free-space vector and scalar Green's functions

(34)

G = r
r3 (35)

and

G=~
r (36)

are employed, then the integrand of the time-derivativeterm in equation (33) may
b~ written as

(37)

so that

9



IIJ

rx ~ (Uco+u)

§
nX ~ (Uco+u)

IIJ
I)t dV = I)t dS _ afl) (!)dVo

r3 r atr

v s v

(38)

Therefore, with the Green's functions given by equations (35) and (36), the set of

coupled integral equations (32)-(34) may be written as

~u=- §
s

[(U~u)r _ rX (~XU) ]dS -Iff r>;. Q dV,
. v

(39)

and

(3(1)= - ,[
[

(nofl))r _ rX(DXfI))

]
dS +!,[ B (rxn)dS

JJ' r3 r3 v 11' r3s s

1

§
n x aa (Uco+u)

+_ t dSv r
s

_ !
IJJ{afl) (!) + r x [(Uco+u)x fI)]}

dV,
v at r r3

v

(40)

and

{3B+,[ B a (!) dS = _,[ {n ° a(uco+u) (!\ + v ro (n x fI) )}
dS

JJ' dD r 11' at r1 r3
. $ s

+fff ro[(Uw+u)X Q]dVo
v

(41)

In two dimensions, the free-field vector and scalar Green's functions are

G=r
r2 '

(42)

10



and

(43)

respectively. The corresponding integral equations in two dimensions are then

f3u= - ,(
[
(n. u)r _ r x (n XU)

]
dl_ f

J
rX fI) dS,

j r2 r2 JJ r2
s v

(44)

and

~ II { a: In (~) + ~[(u.~u) x <0>1}dS,v
(45)

and

J3B+ f B a: lu@ dl = -f {u 0 ~ (uc+u)Jn@+v ro(nr~ <o»}dls s

+II ro[(U.+u) x <0>]cIS,
v

(46)

where?~ two dimensions,

{

2'77"in Y

f3 = TT'on S.
o in yc

(47)

11



DISCUSSION

The boundary conditions expressed in equations (7) and (8) may be readily
implemented in equation (39) by substitution in the integral over the boundary,

yielding

{Ju= -§ [(U';B)r - rX(U;UB)]dS_ Iff r~.. dV. (48)s v

Equation (40) also includes an integral over the boundary that involvesthe dot and

cross products of the surface normal and the surface vorticity. The treatment of the
boundary terms here is not as straightforward. It is shown in appendix C that, for

rigid body motion with a no-slip condition, the dot product of the normal and the
vorticity can be expressed in terms of the boundary condition; that is,

n' ~= -2n '0, (49)

where the boundary condition has been decomposed into its translational U and
rotational 0 parts as

UB= U+rxO. (50)

However, the cross product of the normal and the vorticity cannot be expressed in
terms of the boundary conditions since it involves derivatives of the velocityfield
normal to the boundary (see appendix C). Thus, for rigid body motion, equation

(40) becomes

f3~.~ - J[
[
r(-2n.0) _ rx (n x ~)

]
dS + ! J[ B (rxn) dS

JJ' r3 r3 v JJ' r3
s s

+ ! J( n x ;t (Uco+u)
vJr r dSs

- !
fIJ{

a~ (!)+rx[(Uoo+U)XQ)]
}

dV.
v at r r3

v

(51)

12



Note that equation (41) involves the same cross product boundary term and there-
fore cannot be simplifiedby using the boundary conditions.

Equations (48), (51), and (41) now represent the system of equations to be
solved both in the interior of the fluid and on its boundary. However, the nature of

the equations changes depending on whether or not the boundary or interior is
being considered. In the interior of the fluid the equations take the form

41ru = - § [cnO;B)r- rXCn~uB)]dS-III r~.. dV,s . v

(52)

and

4'7TCI)= _,[
[
r(-2n .0) _ r x(n XCI))

]
dS +!,[ B (r xn) dS

11' r3 r3 v 11' r3
s s

§
nX a (

+ ! at Uoo+u)
v r dS

s

- !
iIJ{aCl) (!) + 0(UQI+u) x CI)I}

dV,v at r r3
v

(53)

where each equation has been written with its unknowns on the left-hand side.

Note that no equation is needed for the stagnation enthalpy in the interior of the
fluid since equation (53) requires the enthalpy only on the boundary.

If. one writes the equations for the boundary values in the same form one finds

2'7TCI)- J( rx(nxCl) dS = _ J( r(-2n'O) dS +!,[ B (rxn) dS
]I ~ Jr ~ vJr ~s s s

§
n x aa (Uco+u)

+! t dS
v .r

s

_ !
iIJ{aCl) (!) + rX [(UQI+u) XCI)] }

dV,v atr r3
v

(54)

13
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and

27TB+ J( B2- (~, dS = _ J( [n. a{u...+u)(~) + v r. (n x (I))]dS

11' an rJ 11' at r r3s s

+III r.[(U~+n)x"]dV.v

(55)

Note that no equation is required for the velocities on the boundary since they are
already specified by the boundary conditions.

Equations (52) through (55) represent an integral equation reformulation of

the equations of motion of an incompressible fluid. These equations possess some

interesting properties. First, they contain no spatial derivatives. Second, they only

require knowledge of the "pressure" quantity (the specific stagnation enthalpy) on

the boundary of the fluid domain. Third, if the variables u, (I), and B are consid-

ered as independent, then these equations are linear in each variable, a condition

one might call "pseudo-linear." Fourth, since all the volume integrals present in the

equations contain the vorticity and since the farfield boundary condition is incorpo-
rated in the formulation, it is immediately apparent that the domain of interest in

the fluid may be restricted solely to that region of the fluid in which the vorticity is

nonzero. These facts naturally lead to speculation as to the usefulness that this for-

mulation might have from a computational point of view. The fact that the equa-

tions contain no spatial derivatives suggests that they might not be prone to the

requirement of artificial viscosity, which plagues so many finite-difference-based

computational schemes. Similarly, since the integral equation formulation only re-

quires knowl~dge of the "pressure" on the boundary, it may obviate the need for'
elaborate schemes to guarantee the convergence of the pressure calculation in the

interior as is required in many differential approaches. The "pseudo-linearity" of

the equations may allow the use of efficient iteration schemes for the solution of

the equations. Finally, the ability to restrict the domain of consideration to only the

domain of nonzero vorticity should, in typical high Reynolds number cases where

the vorticity is exponentially small outside of a thin region, greatly reduce the num-
ber of nodes at which the solution must be obtained.

14
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SUMMARY AND CONCLUSIONS

An integral formulation of the equations of motion of an incompressible fluid

has been derived. The equations consist of a generalization of the Biot-Savart law

for determining the velocity, an integral expression of the momentum equation for

determining the vorticity, and a boundary integral equation for determining the

stagnation enthalpy. The equations are linear in each independent variable, with

the nonlinearities entering only through cross terms of the vorticity and velocity.

This formulation possesses several salient features, including the total absence

of spatial derivatives, the fact that the stagnation enthalpy, or pressure, is required

only on the boundary of the fluid domain and the fact that, since the vorticity is

present in all volume integrals, the domain of integration in this case is restricted

to the region of nonzero vorticity. In addition, all boundary conditions, and in par-

ticular the farfield boundary condition, are naturally incorporated in the formula-
tion.
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APPENDIX A

DERIVATION OF VEcrOR INTEGRAL IDENTITY

One may start by noting that the vector identities

Vx(Gxu) = (u.V)G-(G.V)u+G(V.u)- u(V.G),

V(G.u) = (G.V)u + (u.V)G + Gx(Vxu) + ux(VxG)
(A-l)

may be added with the result that

Vx(Gxu)+V(G.u) = 2(u.V)G+G(V.u)-u(V.G)

+ G x (V xu) + u x (V x G). (A-2)

If one integrates this expression over the volume of the domain and assumes that

the functio~s under examination are sufficiently well behaved for the integrals to

exist, then one may apply the curl and gradient theorems,

IIIVxFdV = § nxFdS,
v s

(A-3)

IIIVfdV = § fndS,
v s

to the volume integral of the left-hand side of the expression to find that

III [Vx(Gxn) + V(Gou)]dV =§ [nx(Gxu) + (Gou)n]dSov s
(A-4)

However, it can readily be shown that

ox(Gxu) =(o.u)G-(n.G)u,

(Gou)n = Gx(oxu) + (o.G)u,
(A-5)

A-l



so that

Iff [Vx(Gxu) + V(G.u)]dV = f [(u'u)G+ Gx(u xu)]dS. (A-6)v s

One is then left with the expression

f {(u.u)G+Gx(nxu)}dS = Iff [2(u' V)G + G(V' u)-u(V' G)s v

+ Gx(Vxu) +UX(VXG)]dV. (A-7)

The divergence theorem may then be used to show that

III (u'V)GdV = f (n'u)GdS- III (v.u)GdV, (A-8)v s v

so that equation (A-7) becomes

f [(u'u)G-Gx(u xu)]dS = ffI{G(V'u)+u(V.G)s v

-Gx (Vxu)-ux (V XG)}dV. (A-9)

Now if one lets

G = r + VB,
r(r + 8)2

where H is .some function that is regular in the fluid domain, then, in the limit as E

approaches zero, one finds that

ffIu(V.G)dV = -4mI,v

ffIuX(VXG)dV = O.v

(A-ll)

A-2



Hence, equation (A-9) may be written as

4mJ = - f [(o'o)G-Gx(oxo)]dSs

+III [(V'o)G-GX(Vxo)]dV.v

(A-12)

In general, if the field point is taken to be in the domain, on the boundary of
the domain, or in the complement of the domain, then the expression becomes

47r in D
27Ton S
OinDc } 0 = -f [(o'o)G-Gx(oxo)]dSs

-III [Gx(V xo)-(V'o)G]dV.v

(A-13)

If G is taken to be the free-space Green's function

G=r
r3' (A-14)

then equations (A-12) and (A-13) become

4mJ = -f [(o;)r - rx(~xo)]dSs

- III [rx ~3XO) - (~o)r]dV,
v

(A-1S)

and

21T1l ~ - f [(o',:)r - rX(~XO)]dSs

-III [rX(~3XO) - (V;)r]dV.v
(A-16)

A-3/A-4
Reverse Blank
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APPENDIXB

DERlVATION OF SCALARINTEGRALIDENTI1Y

One may begin this derivation with Green's second identity (see reference 3):

IIf (.pV'G - GV2.p)dV = § (4) ~- G: )dS.
v s

(B-1)

Now let

G = 1
(r + E)+ H,

(B-2)

where H is some function that is regular in the fluid domain. Then it can be shown
that

lim

fIJ
V2(

1
)dV = -417",

e-O r + E

v .

(B-3)

so that, in the limit as E approaches zero, one finds that

41T.p = § (: G - 4> ~dS - IfIV24>GdV,
s v

(B-4)

and, in general, if the field point is in the domain, on the boundary of the domain,

or in the complement of the domain, this becomes

417"in D
217"on S
o in Dc

}.p = § (: G '- .p ~)dS -IfI V2.pGdV.
s v

(B-5)

B-1



If G is taken to be the free-space Green's function

G=l r' (B-6)

then equations (B-4) and (B-5) take on the usual forms of Green's third identity:

(B-7)

and

2~ = §~;- ~:n (;)]dS-Iff vz: dV.
s v

(B-8)

B-2
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APPENDIX C

PROOF OF WALLVORTICITYVECfOR'S TANGENCY

For any two orthogonal unit vectors tangent to the boundary tj and Sj,the unit

vector normal to the boundary may be expressed as

nj = £jjk!Pk , (C-l)

where £jjkis the alternating tensor. Since the vorticity is defined as (see Jeffreys

(reference 5))

(C-2)

. the normal component of the vorticity at the wall may be written as

(
aUm

)njCJ)i = (£jjktjSJ £ilm ax. '

aUm

= (£ijJr:BiluJtjSk axl

aUm

= (5j~km -5jm5kI)tjSkax. '

(aUk aUj )= tjsk axj - axk '

(C-3)

Each of the last two terms represents a directional derivative tangent to the
boundary. If one assumes that the boundary motion is rigid, then on the boundary

U. = U. + £00'v.n k ,1 1 lJr'J (C-4)

where Uj is the translational motion of the boundary and Oi is its rotational motion

about the origin of coordinates. With this representation one finds that
C-l

- ---



t. aUi -
JOxj - Eijktjilk,

(C-5)

and

(C-6)

so that

= 2ekjmsktjilm.

(C-7)

Thus, for rigid boundary motion, the normal component of the vorticity may be

determined from the velocity boundary conditions.

The cross product of the normal and the vorticity at the wall may be

determined in a similar manner. The cross product is defined as

(C-8)

If one employs equation (C-2), this expression becomes

(C-9)

C-2



so that

(
au. au. au.

)
au.

E... n:Wk = n. t 1t. + s 1s. + n 1n. -n.--!
IJIt''''J J a.dxk 1 a.dxk 1 a.axk 1 J dxj ,

hence, the components of the cross product are

Quj

ti(Ejjknju>0 = S~k -tinj dxj ,
aUi

Si(Eij~J-(J)0 = -t~k - Sinjdxj,

n' (Eo'knoU>k) = 01 IJ J .

(C-IO)

(C-ll )

Since, for rigid boundary motion, the cross product of the boundary normal vector

and the boundary vorticity contains derivatives of the velocity in the direction

normal to the boundary, this cross product cannot be determined from the

boundary conditions alone.
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