An integral equation formulation of the Navier—Stokes equations

*
James S. Uhlman
Engineering Technology Center, Anteon Corporation, Mystic, CT 06355, USA

Abstract

A set of coupled integral equations is derived from the incompressible Navier—Stokes equations and the continuity
equation. These equations are based on a velocity—vorticity—total pressure formulation and are exact. The equations consist
of a generalization of the Biot—Savart law for the determination of the velocity, an integral expression of the momentum
equation for the determination of the vorticity and a boundary integral equation for the determination of the total pressure.
The equations possess a number of interesting properties, including the absence of spatial derivatives and the fact that the
total pressure is only required on the boundary of the fluid domain. In addition, since for steady flows the vorticity is
present in all volume integrals, the domain of integration in this case is restricted to the region of nonzero vorticity. All
boundary conditions, and in particular the far-field boundary condition, are naturally incorporated in the formulation.
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1. Introduction

In the course of various investigations it became ap-
parent that it might be possible to express the equations
of motion of an incompressible fluid solely in terms of
integral equations. In fact, it turns out to be possible to
derive such a set of coupled integral equations in what may
be called the velocity—vorticity—total pressure formulation.
This article presents the resultant equations and discusses
their properties with a view toward their numerical solution.
Details of the derivation may be found in Uhlman [2].

2. Mathematical formulation

We shall consider the flow of an incompressible fluid in
an unbounded domain in body-fixed coordinates (formula-
tions for bounded flows may also be readily derived). The
velocity may then be expressed as the sum

Uyp +u (D

where in an unbounded fluid domain wu is the disturbance
velocity and Uy, is the freestream velocity. The governing
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differential equations are then, the continuity equation
V-u=0 @
and the incompressible Navier—Stokes equations
d (Ux +1)
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The Navier—Stokes equations may also be written in the
form
0 (U +u)
p——
ot

+pUp+w- -Vu=—-Vp+ uViua ®3)

+VH - pUp+u) X w=—-uV xw®
O
where the total pressure, H, is defined as
H = (p = poo) + 30 [(Uso + 1) - (Uoo + 1) = Uy - Uo]
3
and
w=V xu (6)

is the vorticity.

The derivation of the integral equation formulation re-
quires two integral identities. The first identity is the vector
identity
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where if the fluid domain is denoted by V and its boundary
is S then

A inV
B=142r onS 8
0 in V¢

and G is a vector Green’s function which may be taken to
be
R
G = ©
The second integral identity is a generalization of
Green’s third identity [1]

po= #{—G gb—}dS—Z]/qubGdV 10)

where G is a scalar Green’s function which may be taken
to be
G ! 11

=R (11
These identities holds for any scalar and vector fields which
are differentiable and for which the integrals exist.

These integral identities may be applied to the Navier—
Stokes equations [2] to yield the set of coupled integral
equations in the velocity—vorticity—total pressure formula-
tion as,
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It should be noted that a two-dimensional version of these
equations has also been formulated.
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3. Discussion

Equations (12) through (14) represent an integral equa-
tion reformulation of the Navier—Stokes equations. They
contain no spatial derivatives and only require knowledge
of the total pressure on the boundary of the fluid domain.
Since all the volume integrals present in the equations con-
tain the vorticity and since the far-field boundary condition
is incorporated in the formulation, it is immediately ap-
parent that only the rotational regions of the flow need be
considered.

These equations also have interesting properties when
examined with an eye toward their numerical solution.
They form a coupled set of second kind Fredholm integral
equations which are well-known for their generally good
numerical properties. Since the volume integrals are only
non-zero over the rotational portion of the flow and the
far-field boundary condition is built in, the solution domain
may be restricted to the rotational region, thereby shrinking
the computational domain.

The matrix equations formed by discretization of these
equations will be full. This situation would make their
solution computationally infeasible for large problems were
it not for the fact that their kernel functions are of a form
which will allow the application of accelerated methods
such as the Fast Multipole Method (FMM) of Greengard
[3] and Rokhlin [4]. With the introduction of acceleration,
the fullness of the matrix becomes an asset in that it allows
all regions of the grid to communicate with one another
directly at each iteration. This feature should reduce the
number of iterations required for solution, relative to the
number necessary in the solution of sparse matrices. It
should be noted that the multigrid methods introduced
for the acceleration of the solution of sparse matrices are
closely related the acceleration methods required to achieve
computational competitiveness in the present approach.

Work is presently ongoing to developra numerical solu-
tion method for the Navier—Stokes equations in the present
integral equation form. Results of that effort are anticipated
s001.
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