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A Note on the Development of a Nonlinear Axisymmetric

Reentrant Jet Cavitation Model

James S. Uhiman
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The boundary integral method is formulated for the problem of the fully nonlinear,
axisymmetric potential flow past a body of revolution. A model is devised for the exact
formulation of the reentrant jet cavity closure condition. It is demonstrated that the
solution obtained is essentiaily independent of the length selected for the jet. Results
obtained using the reentrant jet cavity closure model are compared with those ob-
tained using the Riabouchinsky-type cavity closure model used by Uhlman (1987,
1989) and with experimental results. The agreement between the two cavity closure
models is seen to be excellent, with the Riabouchinsky wall results deviating only
slightly at short cavity lengths. The agreement of the reentrant jet model with the
experimental data is also excellent, although the addition of the viscous component
of drag is seen to be required for cavitating cones of sufficiently small half-angle.

1. Introduction

THE MODELING of the cavitating flow about various bodies has
been the subject of much research. The early work approached the
problem from the analytical theory of free streamlines and, al-
though exact, was limited to two-dimensional problems (see, e.g.,
Efros 1946, Gilbarg & Serrin 1950, Gilbarg 1960). The focus
then shifted to the linear theory of the flow about hydrofoils un-
dergoing both partial and supercavitation (see, e.g., Tulin 1953,
1964, Guerst 1959, 1960, Leehey 1973, Uhlman 1978). The ad-
vent of high-speed computing brought about the development of
numerical approaches to the analysis of both linear and nonlinear
models of cavitation phenomena. These efforts were, again,
largely directed to the analysis of lifting surface flows (see, e.g.,
Pellone & Rowe 1981, Uhlman 1983, 1987, 1989, Fine 1992,
Kinnas & Fine 1993, Fine & Kinnas 1993, Dang & Kuiper 1999a,
1999b, Krishnaswarmy et al. 2001). Efforts aimed at the predic-
tion of the flow about nonlifting bodies received much less atten-
tion. Notable exceptions are Tulin (1953), Brennen (1969), and
Chou (1974). More recently, axisymmetric flows have also been
addressed by Uhlman et al. (1998).
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Interestingly, of all these efforts, only the early work of Efros
(1946), Gilbarg (1960), and the more recent work of Uhlman et al.
(1998), Dang and Kuiper (1999a, 1999b), and Krishnaswarmy et
al. (2001) have employed the correct, physical, reentrant jet model
for the cavity termination. All of the other approaches employed
some method to “close” the cavity (albeit occasionally with non-
zero net flux). The linear theories typically imposed a condition
specifying the net source strength. The nonlinear approaches.of
Pellone and Rowe (1981), Fine (1992), and Kinnas and Fine
(1993) employed similar conditions, while Uhlman (1983, 1987,
1989) implemented a modified Riabouchinsky wall at the end of
the cavity to close the cavity. )

Most of these approaches typically resulted in solutions with
zero net source strength. The exact reentrant jet models of Efros
(1946), Gilbarg (1960), Uhlman et al. (1998), and Dang and
Kuiper (1999a, 1999b), however, yield a negative net source
strength by effectively directing the reentrant jet across a branch
cut and onto another Riemann sheet. While the work ’of
Krishnaswarmy et al. (2001) also employs such a reentrant jet,
they insert an artificial source into the flow field, which balapces
the mass flux through the reentrant jet. The present work 1s an
extension of the work of Uhlman et al. (1998). It employs methods
quite similar to those of Dang and Kuiper (19992, 1999b) and
Krishnaswarmy et al. (2001), although without the source em-
ployed in the latter.
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2. Mathematical formulation

Following the work of Fine (1992), Kinnas and Fine (1993), and
Fine and Kinnas (1993), a potential-based model of the cavitating
flow is employed. The basis for the potential flow model to be
presented here is Green’s third identity applied to the axisymmet-
ric disturbance velocity potential; that is,

ae(p,
B@(r,9)=ff{ (PEZ(P) G(r,0; p,p)
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aG(r,8; p,p)
T pdods (D
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where the normal is directed out of the fluid, s is arclength along
a meridian,
4m,inV
B=1q2monS 2)
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and the total and disturbance potentials are related by
P=x+o¢ 3)

where all quantities have been made dimensionless with respect to
p, U, and 4.

The boundary conditions to be applied are
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where n and s are unit vectors normal and tangent to the body/
cavity boundary, respectively, and the various boundary segments
are shown in Fig. 1. The last boundary condition may be integrated
to yield

qo:(po+\/1+(r(s—so)~(x—x0), onsS, (8)

where ¢, is the potential at the detachment point of the cavity on
the body.

G = Green’s function
U, = freestream speed

= total velocity potential

= disturbance velocity potential

= normal vector

= tangent vector X
. P—p.

= cavitation number, =

I

QA w = O

5P U2 variable

Nomenclature

s = arclength in meridional plane
field point location
£ = source point location or integration

\E

/

—

Fig. 2 illustration of conditions satisfied on the cross section of the
reentrant jet

3. Jet conditions

The cavity boundary conditions hold right up to where the
reentrant jet is crossed by the integration boundary. It is assumed
that the jet has asymptoted to a constant diameter and a constant
velocity throughout its cross section. The conditions at the jet
cross section are then that the velocity normal to the cross section
is the same as that at the cavity wall and that the potential at the
cross section is constant and equal to that at the edge of the jet
cross section. On the cross section of the reentrant jet, the condi-
tions are then

T
e l+o—-n, on S; &)

and

P=0o+V1+a(s-s50)—(x~x) ons (10)

where s; and x; are the arclength and the x coordinate at the edge
of the jet cross section, respectively (Fig. 2).

p = fluid density
d = cavitator diameter

o D
C, = drag coefficient, =

1T o,
PUagd

P, = cavity pressure
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4. Governing integral equations
Placing the unknowns on the left-hand side and the knowns on

the right-hand side of the equation, we find that Green's third
identity becomes

ff 29 is ffa(deS ffa(PGdS ff % 4s
27T(P+S ®on _5 an B on B ®on
b c

Sp+S; Sc+Sj
(11)

on the wetted portion of the body/cavity boundary and

I % is ffaqo ds ﬂa‘PGdS 2mo- [[ % s
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on the cavity boundary. Implementing the above boundary condi-
tions, we find that equation (11) becomes
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on the cavity boundary.

In addition to these equations, an auxiliary condition is required.
Here we impose the condition that the net source strength is equal
to the flux through the jet, which may be expressed as

ffz—:dsz\/l+afde (15)
Sy

Sb+SC+Sj

or equivalently

ff%déE ffnde +ffnde (16)
Se Sp Sj

Computation of the axisymmetric Green functions is ad-
dressed in Appendices A and B.
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5. Numerical aspects

To obtain the solution to these equations, they are discretized
into flat panels with piecewise constant source and normal dipole
distributions. The cavity length and initial shape are specified and
the equations are solved for the unknown values of the potential on
the body, the unknown values of the normal velocity on the cavity,
and the quantity V1 + o, from which the cavitation number can be
obtained. The kinematic boundary condition on the cavity is then
employed to update the shape of the cavity boundary, while main-
taining constant cavity length. The solution is then obtained using
this new cavity shape, and this procedure is repeated until con-
vergence has been achieved (Fig. 3).

The initial cavity shape is composed of straight lines that join
together to give the specified cavity length and jet length. An
example for a flat disk cavitator is presented in Fig. 4. The cavity
shape is updated between iterations by computing the velocities
induced at the center of each panel and rotating the panels such
that they are parallel to that velocity starting at the point of de-
tachment of the cavity from the cavitator. Specifically, if the old
position of a panel endpoint relative to its upstream end is given
by (Ax, Ay), then the new position of the panel endpoint is as-
sumed to be given by (Ax + 8x, Ay + 8y). The kinematic boundary
condition then requires that

Ay + 8y ) v

Ax+8x=tan(6+86):; a7
where the geometric quantities are illustrated in Fig. 4. Assuming
rotation of the panel, the new displacements of its endpoints are
readily shown to be given by

&x =-Ay 80
oy = Ax 60 (18)
for small rotations, where
50 = M (19)
ulx + vAy

Fig. 3 Cut-away view of an axisymmetric cavity with a reentrant jet

behind a disk cavitator with //d = 5. Shades represent the disturbance

potential. Solution has been revolved about the axis of symmetry to
obtain cut-away view.
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Fig. 4 Geometry for panel alignment
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Fig. 8 Convergence with iteration number for a disk with /_,,/d = 5.00,
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These displacements, (8x, 8y), are computed at each panel end-
point starting at the upstream detachment point of the cavity and
are then added to all panel endpoints downstream of the current
panel. These displacements have the effect of altering the length of
the cavity. To counter this, the cavity is then stretched in such a
manner that the cavity length and jet length are returned to their
original specified values. The initial cavity shape, cavity shape
after the first iteration, and the final converged cavity shape are
presented in Fig. 5. The solution is considered to have converged
when the cavitation number and the drag coefficient have con-
verged to some specified level of accuracy. The convergence of
these quantities as a function of iteration number is presented in
Fig. 6. The shape of the cavity can be shown to converge at
roughly the same rate as these quantities. Convergence with num-
ber of panels is addressed in the next section.
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Fig. 8 Convergence of the drag coefficient with increasing number of
elements over the cavitator, het/d = 75%1,,/d

6. Results

The results presented herein are exact in the potential flow limit
within discretization error. Upon convergence, the kinematic con-
dition is satisfied on the cavitator and both the kinematic and
dynamic conditions are satisfied on the cavity boundary. A typical
solution is presented in Fig. 3, illustrating the cavity and jet shape
obtained and the disturbance, potential on the body/cavity bound-
ary.

The convergence of the solution with increasing numbers of
elements is presented in Figs. 7, 8, and 9. These figures show that,
while the cavitation number and the drag coefficient computed for
a given cavity length converge quite rapidly, the jet diameter
converges somewhat more slowly. This is attributed to the fact
that the cavitation number is a global quantity in the solution,
while the jet diameter is a local quantity and is more dependent on
the resolution of the cavity boundary.

The effect of the assumed jet length is presented in Fig. 10. It
is readily seen that the shape of the cavity is essentially indepen-
dent of the assumed jet length. The computed values of the cavi-
tation number, jet diameter, and drag coefficient can be shown to
be virtually independent of the jet length.

The dependence of the cavitation number on the cavity length is
presented in Fig. 11. The results from the present reentrant jet
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Fig. 11 Comparison of the dependence of cavitation number on cavity
length as predicted using a reentrant jet cavity closure model and a
Riabouchinsky-type cavity closure model

formulation and a Riabouchinsky wall formulation (see, e.g., Uhl-
man 1987, 1989, Uhlman et al. 1998) are shown. These results are
in good agreement, particularly as the cavity length becomes large.
At small cavity lengths it is seen that the Riabouchinsky wall
formulation slightly underpredicts the cavitation number for a
given cavity length. This effect is further explored in Fig. 12,
which shows that for equal cavitation numbers the Riabouchinsky
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Fig. 13 Comparison of predicted and experimental drag coefficients
for a disk cavitator for 1 =< /,,/d < 10 (data from May 1975)

wall formulation predicts a slightly shorter cavity, and at equal
cavity lengths the Riabouchinsky wall model predicts a cavity that -
is fuller at the aft end of the cavity.

Comparisons of the predicted and measured drag coefficients
for a disk cavitator are presented in Figs. 13 and 14, The agree-
ment is seen to be well within' the scatter of the data, although
leaning toward the high side for small cavitation numbers. Note
that there can be no viscous component to the drag for a disk
cavitator due to the fact that its tangent vector is always per-
pendicular to the drag direction. As a further consistency check,
Fig. 15 presents a comparison of the drag computed by integration
of the pressure over the disk cavitator with the drag predicted by
a control volume analysis (see Appendix C). Again, the agreement
is excellent.

Figure 16 presents a comparison of the predicted and measured
drag on conical cavitators of 15 deg half-angle. In this case the
viscous drag does contribute to the overall drag. Figure 16 shows
two drag predictions: one for the inviscid case and one assuming
laminar flow where the viscous drag is computed using Thwaites
method (see, e.g., White 1974). The Reynolds numbers of the
various data range from roughly 0.5 x 10° through 2.0 x 10° (see
May 1975). The Thwaites method was used with a Reynolds num-
ber of 1.0 x 10° to be representative of the data. (Note that for the
Thwaites method, Cyex Re™"2) The agreement of the predictions
with the data is excellent. The inviscid prediction bounds the data
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Fig. 14 Comparison of predicted and experimental drag coefficients
for a disk cavitator for 4 < [, /d < 40 (data from May 1975)
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Fig. 15 Comparison of drag coefficients for a disk cavitator predicted
by pressure integration and momentum flux, her/d = 50%l0,/d
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Fig. 16 Comparison of predicted and experimental drag coefficients
for a 15 deg half-angle cone cavitator, 2 < lav/d = 10 (data from May
1975)

from below, while the viscid prediction runs through the center of
the data. Thus, for cones of small half-angle, it is important to
include the skin friction contribution to the cavitator drag. It
should be noted that it can be shown that the favorable pressure
gradient over a disk cavitator will prevent the transition of the
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Fig. 18 Drag coefficient versus cavity length for conical cavitators
(inviscid)

boundary layer to turbulence. However, for sufficiently small cone
angles and sufficiently high Reynolds numbers, transition will
occur and the assumption of a laminar boundary layer, as em-
ployed here, will need to be modified.

The predicted dependence of cavitation number and drag coef-
ficient on cone half-angle is presented in Figs. 17 and 18, respec-
tively. The variation in cavitation number with cone half-angle is
weak at large half-angles, but becomes increasingly important as
the half-angle gets smaller. The dependence of the drag coefficient
on cone half-angle is strong at all half-angles, but again becomes
increasingly important as the half-angle decreases. Note that these
results are for the inviscid case. Inclusion of the viscous compo-
nent of the drag would tend to lessen the importance of cone
half-angle since the added viscous drag would increase as the
half-angle decreases.

7. Conclusions

As is evident from the results presented in this paper, the pre-
dictions of the reentrant jet model are in good agreement with the
available experimental results and are consistent with momentum
flux requirements. Although the predictions of the older
Riabouchinsky-type cavity closure vary only slightly from those
of the reentrant jet cavity closure, the reentrant jet model repre-
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sents an improvement over the Riabouchinsky-type cavity closure
model since the only boundary conditions that need be employed
are the physical ones of constant pressure and no flux. Thus, the
reentrant jet cavity closure model is a more physically based
model.
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Appendix A

Axisymmetric Green functions

The expressions for the piecewise constant source and normal
dipole potentials take the form

Far
d
Glx,r; ép)= f = f id (20
_w\/(x — &Y+ +p" = 2rpcos(e)
and
“+ar
aG ( £0) f 0 1 p
— @ Ep=|— pde
on SN - 2477 + 0 = 27 pos(e)
(G oG
=f "ﬁa_ng"Pa_p pdop 21
where
+
3G plx—§&)
EY ?
06 L = &2+ 72+ 2 —2r pcos() ]
%q _ f —p(p— rz cos{¢p)) o 22)
P [(x —E P+t =2rp cos(qo)]
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Using the integrals defined in Appendix B, we find that

G=pJ%(4,B)

9G .
e P8 J5(A.B)

aG 2 50 1
55 =P JSAB)+pr 3 (4B)

where
A=r2+p2+(z—§)2

B=2rp

The influence of an axisymmetric panel on itself is determined

by noting that for a closed body

oG oG
[Joas=2m-3 [ 5ras
. JFi Sj

Si

for a field point on the body surface.

Appendix B

Evaluation of integrals

The integrals necessary for the evaluation of the axisymmetric

Green functions take the general form

29

cos™(¢)
JPAB)= | —mM
( ‘{ [A-B cos(cp)]% ¢

Inflow

It can then be shown that

JY(A,B) = K(k)

4
\VA+B

4
—————Ek)
A-B)\/A+B
where E(k) and K(k) are elliptic integrals defined by

o

de
Kky=| ————mo
‘c[ \V/ 1 -k sin® (@)
g2
E(k) = f 1 -k sin® (@) do
0

23
23) JS(A,B) =

(24)
énd

2B
25 2_
(25) k i+B

@27

(28)

(29)

Equation (26) may be used to derive the recursion relation

1
TrAB) =g A5 (AB) - 175 (A,B)]

(30

which may be employed to determine the other required integrals

in terms of J9 and J§.

Appendix C

Mass and momentum control volume analyses

(26) The control volume for this analysis with the associated bound-

ary designations is depicted in Fig. 19.

Control Volume

Fig. 19 Control volume with boundary designations
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Employing this control volume plus the surface at infinity, S,,  then yields the integrals

(where S, = llm SR and Sy is the surface at radius R), we may
perform a control volume analysis of the conservation of mass using

ff p(nu)dS=0 3D

Sp+Se
+8j+Seo

Assuming, for large r, that the total potential may be approximated as
0 1
b=V, x———+0 - (32)

4arr r

where Q is the source strength seen in the far field, we find that the
contributions to equation (31) then become and

f plnu)dsS=0
Sp
ffp(njuj) ds=0
Se

ffp (njuj) dS pl]]et 4 djet

ffp (nju;)dS=pQ (33)
Soo
where Uy, = U, V1 + o. Hence, we find that

0=-2a22u, (34)

4 et Jet

so that

ffpu (nu) dS=0
Sb

fpu(njuj)d5=0

Se

Jf oty as=—puz, 2,
o

4
ffpu (nju) dS = 3 pQU., (36)
Seo

ffnx(p—pc)dS:D
[[n-poas-o
Se
Jfno-poas=o0
S

1
Jfrw-pas=—5p0v. 37
Seo

pdithe, pU.Q (38)

or, in dimensionless form

Performing the momentum analysis using

ff pu;(n;u;) dS + ff n(p—p)dS=0 (35)

Sp+Se Sp+Se
+Sj+S00 +8j+Seo
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7 d’“ 21 ! 39

where we note that d;,, = d,(o).
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