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Abstract

Slender body theory (SBT) is widely used for the numerical analysis of axisymmetric
supercavitating bodies. However, due to the requirement that the slope be small, SBT cannot be
used for many practical cavitator shapes such as disc and cones with large cone angles.
Typically this situation would be handled by applying a nose correction to the SBT models for
such cavitators. This can be avoided with a boundary element (BE) model where there is no
slenderness assumption.

In this paper, boundary element modeling is applied to axisymmetric supercavitating bodies
so that the cavitator shape can fully be included in the flow analysis. Mathematical formulation
of the model is done with constant strength source and dipole panels, defined along the body and
cavity boundary. Cavity termination is accomplished by modified Riabouchinsky wall. The full
nonlinear free-boundary problem is solved. Different cavitator geometries at a variety of
cavitation numbers are analyzed in this paper for cavity shape, surface pressure distribution, and
base drag. Comparisons with experimental and analytical models are also done.
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Nomenclature
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Fluid density
Cavitator diameter

Vehicle speed

Total velocity potential
Disturbance velocity potential
Fluid total velocity

Fluid disturbance velocity
Fluid pressure
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Introduction

Interest in high-speed undersea vehicles has recently increased. In order to achieve the
speeds of interest it becomes necessary to investigate supercavitating and superventilated flows.
It is believed that, with proper design, these flows can be employed to attain vehicle drags which
will allow these vehicles to achieve the desired speeds.

Early work on cavitating flows was done by Efros (1946), who employed conformal
mapping techniques to examine supercavitating flows. Tulin (1964) introduced the use of
perturbation methods to the field in the examination of two dimensional flows, while Chou
(1974) extended that work to axisymmetric supercavitating flows using slender body theory.
Early numerical approaches include that of Brennan (1969), who employed a mapping technique.
Nonlinear boundary element models were developed by Uhlman (1987, 1989) and Kinnas and
Fine (1990, 1993) among others.

This work represents an application of the methods of Uhlman (1987, 1989) and Kinnas
and Fine (1990, 1993) to supercavitating bodies. These methods are also being extended to

include ventilation and blockage effects. Work is continuing on the extension of these methods
to improved cavity termination models and three dimensional flows.

Mathematical Formulation

Defining the disturbance potential by
® = Ux + 0 (1)

we find that the integral equation for the disturbance potential is

_ ad 0G
2R¢ = - {gG - ¢$} ds 2)

c

where G is the axisymmetric Green's function (see Appendix A), C denotes the total flow
boundary contour including the cavitator or body boundary, the cavity wall and the boundary of
the cavity terminator and the normal to the boundary is pointing into the fluid. Bernoulli’s
equation yields

P+ 2 PUL = pe+ 1P a2 3)
or
94 _
(Um) l1+0 4)

where ¢ is the cavitation number defined as
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(peo - pC) (5)

1 2
Lpul

g =

The result in equation (4) may then be employed to obtain the dynamic boundary condition on
the cavity boundary given by

Sx+a—¢ =Yl+0o (6)
os

Finally, to complete the formulation we require a closure condition which may be written as

90 4s . _
nds S M )

Cg + Cc
where C,, denotes the union of the body and cavity terminator boundaries and C. denotes the
cavity boundary.

Thus, on the body and cavity terminator contours, Cp, the integral equation is given by

2n¢—f¢%}ds+ %Gds:— %Gds+[¢%§ds (8)

C .
B Ce Co Ce

and on the cavity surface, Cc, the integral equation is given by

oG o _ 0 oG
I —ah‘n—ds + §n—‘GdS —-‘27t¢' a_n'GdS +]¢¥ds (9)
Cs Ee e Ce
with the closure condition
945 .. _ | %4ds
-a-;l- ES_ dS = - E .(K ds (10)
Cc Ce
Note, however, that equation (6) implies that, on the cavity boundary,
& =0 + Y1 +0(s-sq) - (x-xg) (11)

The required equations then become
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2nd - f ¢—ds + %G ds - ‘J1+Gf (s-so)—ds

Cs Ce

B a0 dG oG
= §HGds +¢0j a—ds —[ (x—xo)gds

Cp

on the body and cavity terminator boundaries, and

I ¢-——ds + —g%Gds - Y1+ o|-2n(s - sg) +J. (s-sG)——ds

C C
B Ce C

= -21;[¢0 - (x-xo)] - iGds +¢0[ —ds [ (x-xo)%—?ds

C L&
Cs C C

on the cavity boundary.

(12)

(13)

These equations represent a mixed boundary value problem. The unknowns over the
wetted portions of the flow boundary are the values of the disturbance potential, while over the

cavity boundary the unknowns are the values of the normal derivative of the potential.

CAVITATOR CAVITY BOUNDARY

< CAVITY TERMINATOR j

Figure 1  An illustration of the cavitator, cavity and cavity terminator.
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Cavity Termination Models

The modeling of the closure of the cavity is, perhaps, the most controversial aspect of the
numerical simulation of cavitating flows. Certainly, for sufficiently high Froude number, the
correct laminar model for axisymmetric flows is the reentrant jet model (see figure 2).

REENTRANT JET

Figure 2 An illustration of a reentrant jet cavity termination model.

However, in the interest of expediency, the cavity termination model we have employed here is
the so-called, “modified Riabouchinsky model,” (see Uhlman 1987, 1989 and figure 1). It may
be argued that the salient feature which both models possess is a stagnation point in the flow in
the vicinity of the end of the cavity. In addition, due to the nature of elliptic flows it can
certainly be argued that, for sufficiently long cavities, the nature of the cavity termination should
have only a small effect on the behavior of the cavity near the cavitator. Further examination of
the effect of cavity termination models on cavitation parameters will have to await the
development of a reentrant jet model (see Uhlman 1999). Finally, it should be noted that for low
Froude number flows, there also exists another steady cavity termination model referred to as the
twin vortex model.

Solution Procedure

Following the work of Uhlman (1987, 1989) the procedure for the solution of the
nonlinear problem consists of:

1) selecting a cavity length,

ii) initializing the cavity shape

iii) formulating the mixed boundary value problem for the existing cavity shape, wherein the
kinematic boundary condition of no-flux is enforced on the wetted portions of the
boundary and the dynamic boundary condition of constant pressure is cnforced on the
boundary of the cavity,
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iv) solving the mixed boundary value problem on the existing cavity shape, yielding the
value of the cavitation number and the values over the boundary of the disturbance
potential and its normal derivative,

v) updating the cavity shape by using the kinematic boundary condition over the cavity,

v) iterating to convergence.

This procedure or algorithm is presented the form of a flow chart in figure 3.

Cavity Shape Update

In order to update the cavity shape approximation the kinematic boundary condition is
employed. ‘The kinematic boundary conditivn vu a given pancl is writtcn as

nu = 0 (14)

where it is assumed that the velocity is known from the solution of the integral equations and the
normal is written as

n, = - Ay + dy
As
(15)
ny = Ax + 8x
As
where
As® = Ax® + Ay (16)
and the quantities 8x and Jy are to be determined. Equation (14) then becomes
vox - udy = udy - vAx (17)

and another equation must be introduced to allow us to solve for 8x and 8y. The simplest
approach is to assume that dx is zero, this then yields the result that

5 vAx - uAy

This displacement is then applied to the panel from which it was derived and all downstream
panels.
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Given cavity length,
initialize cavity shape

v

Formulate mixed boundary value problem,
with kbc on wetted boundary
and dbc on cavity boundary

¢

Solve mixed boundary value problem,
vielding the disturbance potential,
its normal derivative,
and the cavitation number

!

Update cavity shape,
using kbc over cavity boundary

Convergence no

achieved?

yes

()

Figure 3 A flow chart of the solution algorithm employed.
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Alternatively, one might require that
(Ax + 8xf + (Ay + 8y)f = As’ (19)
which, when linearized yields
Axdx + Ay dy = 0 (20)

From these equations we then find that

8x = Ay uAy - vAx)

uAx + vAy 1)
5y :AX(M

uAx + vAy

m 1 E

Forces are computed from integration of the pressures over the relevant boundaries.
Specifically, the drag on the cavitator is computed by integrating the fluid pressure over the
wetted portion of the cavitator and subtracting the force due to the constant cavity pressure
acting over the aft face of the cavitator. The pressures in the fluid are computed from the
velocities via Bernoulli’s theorem.

The velocities are computed from the values of the potential and its normal derivative
over the boundary. This is accomplished by taking the derivatives of the disturbance potential
and the coordinates with respect to arclength along the flow boundary to obtain the quantities

$x» Sy, and a—¢

ds

at the control points of the panels. Since the normal derivative and the components of the normal
are already known, we may then form the equations

as
do

V= —
y on

(22)

nyu + n

where u and v represent the components of the disturbance velocity. These equations may then
be solved for u and v and their values may be used to compute the pressure.
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Ventilation Case
Define the disturbance velocity potential for the external flow, ¢*, by
@' = UJx + ¢") (23)
Then the integral equation for the external disturbance potential is
2np’ = - {% G-¢ gn%} ds (24)
5

where G is the axisymmetric Green's function.

Assuming irrotational flow of an incompressible fluid on the interior of the cavity as
well, we may define a velocity potential for the internal cavity flow, ¢~, by

& =U0 (25)

The kinematic boundary condition on the body/cavity boundary is then given by

a +
af; ol
% (26)
L
an =0
In the external flow Bernoulli’s equation yields
1 "*U2 = n+ 1 4 +)2
P-t5 P U, = pr+5pYg 27)
or
+|2 P.-P*
(I‘}—) = 14|75 (28)
oo 4 At
In the internal flow, Bernoulli’s equation yields
p+3plgf =H (29)
Equality of pressure across the cavity interface then requires that
q+2 pM'H (p')(q- )2
— =1+ + [l 30
[ Lowz| o\
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Hence, if we define

. -H
G = (I" 2) (31)
1 At
Lo+l
then the dynamic boundary condition on the cavity exterior becomes
e =[oo GREST <32>
which may be written as
s+§£=ﬂl+oil+ 1 p_'i2‘21" (33)
* " ont (1+0)|pt/{U..
which may be integrated to yield
9" = o - (x-x0) + V(T+0) Hs) (34)
where
| L (e} Ple
_ P A |2
H(s) [1 + i (p+)(Um)] N (35)

Thus, on the body and cavity terminator contours, Cg, the integral equation for the external flow
is given by

2 - f ¢%§ds + %Gds - ] F(s)—ds

Cp CC
Ce (36)
KD 3G 3G
=-| 5 Gds +¢oo] —ds-[{x—xg)—ggds
Ca Cc Cc

and on the cavity surface, Cc, the integral equation is given by
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—j %%ds +§ =—Gds - Y1+ o|-2n Ks) +] F(s)ég—ds

on on
CB CC
c 37)
0G
= -21t[¢0—(x-x0)] 3 %Gds +¢OI gds -[(x—xo)%%ds
Cs Cc Cc
with the closure condition
945 4. - . | Mas
nde " ) Wi )
Cc CB

The flow on the interior of the cavity is computed as a straight potential flow with kinematic
boundary conditions applied. It is the goal of the present effort to demonstrate that this approach
to solving the coupled problem does, in fact, converge. The current approach has been to solve
the interior flow using a finite element method. The finite element method has been employed
with the idea that it could later be extended to handle more complicated flows without impacting
the coupling between the internal and external flows.

It should be noted that this ventilation model is incomplete. What remains to be
developed is model for the loss of ventilation gas from the cavity. From the experimental results
of May (1975) there appear to be at least three regimes. In the first regime the gas loss seems to
be due to entrainment in the reentrant jet and is reasonably steady. The second regime involves
gas loss through the shedding of toriodal bubbles from the back of the cavity and is highly
unsteady. In the third regime the cavity has entered the so-called twin vortex mode and the gas
loss is again steady. In the first regime the dependence of the effective cavitation number on the
gas flow rate is quite strong. In the third regime the gas is passing out the twin trailing vortices
and there is only a weak dependence of the effective cavitation number on gas flow rate. the
second regime represents a transition between the first and third. In our present model we have
assumed that the gas which flows into the cavity, flows out through the cavity termination wall at
the same net flow rate. This results in a very weak dependence of the cavitation number on gas
flow rate.
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Results

The first set of results to be presented will examine natural cavitation past axisymmetric
cavitators of differing shapes. Figures 4 and 5 present the cavity shapes for disk and cone
cavitators at identical cavitation numbers. The length scales are dimensionless with respect 1o
the base diameter of the cavitator. It is readily seen that, for a given cavitation number, the disk
cavitator leads to longer cavities and cavities with greater maximum diameters.

1.5 I T
] —0——  Sigma=0.2
ez 1.0 < Sigma=0.4
é —0— Sigma=06
Cg 0.5 ———tr—— Sigma=0.8
—e—  Sigma=10

0.0 3 [ !

0.0 1.0 2.0 3.0 4.0 5.0

Axial Distance, X

Figure 4 Cavity shapes for a disk cavitator at a variety of cavitation numbers.
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Figure 5 Cavity shapes for a cone cavitator at a variety of cavitation numbers.
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Figures 6 through 8 present the dependence on cavitation number of the
dimensionless cavity length, the dimensionless maximum cavity diameter and the drag
coefficient respectively. The results for both the disk and the cone cavitators are presented.
Again, it is seen that the disk yields longer and wider cavities at a given cavitation number. In
addition, it is seen that the drag associated with the cavitation is substantially higher for the disk
cavitator than for the cone.
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Figure 6 Dimensionless cavity length versus cavitation number for disk and cone cavitators.
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Figure 7 Dimensionless cavity diameter versus cavitation number for disk and cone cavitators.
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Figure 8 Drag coefficient versus cavitation number for disk and cone cavitators.

Figures 9, 10 and 11 present comparisons of the predictions of the present method with
experimental results found in May (1975). Figure 9 presents the dependence of the drag
coefficient of a disk with the cavitation number, while figure 10 presents the same data for a
cone. The agreement in both cases is good, with the predictions falling within the experimental
scatter. If anything, the predictions appear to be slightly on the high side. This is particularly
curious in the case of the cone since viscous drag contributions have not been taken into account.
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Figure 9 Drag coefficient versus cavitation number for a disk (from May 1975).
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Figure 10 Drag coefficient versus cavitation number for a cone (from May 1975).

Figure 11 presents the dependence of the cavity length on cavitation number for a disk. In this
case the length has been normalized with respect to the inverse square root of the drag coefficient
following the work of Garabedian (1956). Again, the agreement of the predictions with the data
is good.
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Figure 11 Normalized cavity length versus cavitation number for a disk (from May 19735).

Figures 12 and 13 present the predicted and experimental dependence of the drag
coefficient, for sigma-shaped cavitators, on axial cavitator length for four different cone half-
angles. The results in figure 13 are for zero cavitation number, while those in figure 12 have
been scaled to zero cavilation number based on the assumption that

Cp = Cp,(1 +0) (39)

It is readily seen that, although the trend is correct, the computations overpredict the drag
coefficient. It is suspected that this is due to the existence of recirculation regions in the reetrant
corners of the cavitator in real fluids, as such effects would tend to lessen the pressures
experienced by the cavitator in those regions. The potential flow calculations, on the other hand,
will predict stagnation point pressures at all reentrant corners, leading to higher drags.
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Figure 14 shows a comparison of the cavity shapes for a sigma-shaped cavitator and a
cone cavitator of the same half-angle. The cavity shapes for the cone are presented at the same
cavitation number as the sigma-shaped cavitator and the same cavity length. As might be
expected, for a given cavitation number the sigma cavitator produces a cavity which is both
longer and larger in diameter. Even for a cavity of the same length, the sigma cavitator produces

a cavity of significantly greater diameter. The penalty for this volume increase is a large
increase in the drag experienced by the cavitator.

1.5

PO0%000
1.0-

=== Sigma-shaped

Radius, R

0.5

=== (Cone- same cav number

=—0o== (Cone - same cav length

0.0 ] !

T
0.0 1.0 2.0 3.0

Ll I 1 = I
4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

Axial Distance, X

Figure 14 A comparison of the cavity produced by a sigma-shaped cavitator with that of a cone

at the same cavitation number and at the same cavity length (sigma-shaped cavitator o = (.169,
Cp = 1.136; cone cavitator 6 = 0.169, C,, = (.765 and 0.135, C, = 0.740).

Figures 15 and 16 present preliminary results for the ventilated cavity model. Due to the
nonphysical model employed for the gas loss we have had to specify very large gas flow rates o
see any effect. Figure 15 compares the shape of the cavity for a ventilated and unventilated case
at the same cavity length. It is seen that the ventilation tends to reduce the diameter of the cavity
while raising/lowering the cavitation number. Figure 16 presents the pressure distribution inside
the cavity as computed by a finite element method showing that the pressure does vary within the
cavity.
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Figure 15 Cavity shape determined for ventilated flow (unventilated 6 = 0.266, ventilated 6 =
0.090, C,, = 30)

Figure 16 Pressure contours inside cavity with ventilaton.
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Conclusions

The results presented show that the basic calculation method for unventilated
axisymmetric cavitation is well in hand. We are able to compute fully nonlinear cavity flows
readily, with well defined cavity boundaries and good agreement for the drag coefficients. Work
is continuing on the development of improved cavity termination models and the extension of
these methods to three-dimensional cavities with transverse gravity fields.

The situation is not as well developed for ventilated problems. It appears that the
ventilated problem may be viewed as consisting of three subproblems, how to get the gas into the
cavity, how to model the behavior of the gas while it is in the cavity and how to get the gas back
out of the cavity. The first subproblem is fairly simple and has been solved here by merely
introducing the ventilation gas at the back side of the cavitator. The second subproblem is
somewhat more involved, but has been solved in the potential flow limit by matching pressures
across the cavity boundary as described earlier. The third subproblem is more difficult. Work is
continuing on the development of physical models for the gas loss. It is hoped that these
developments will be able to be reported soon.
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Appendix A
Derivation of Green's Third Identity for Axisymmetric Problems

Green's third identity in three dimensions is given by

po = lo2 (k) 2 1)as =
S
where
R=V(x-tf+(y-np+(z-f (A2)
and
4n,in V
B =1{2r 0noV (A.3)
‘ 0, in V¢

We may express the integral in terms of cylindrical coordinates as
_ d (1)_ 991
B = {¢ 3 (&) - Fnr) 990 o

where s denotes arclength and now

R =+r2 + p(sP - 2rp(s)cos (9—(p) (A.5)

If one now assumes the function ¢ has no dependence on @, then the integration may be
performed over ¢ to arrive at

_ oG 99
e
where
n
G = i (A7)

N2 + p2 - 2rpcos (o)
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or ( see Gradshteyn and Ryzhik, 1965)

_ 4n K(k) (A8)
Viy+npP +(x-&f |
where
K2 = o (A9)
(x-&F +(y+np
Similarly,
%ﬁ“ _ n;;_z " nn%nq (A.10)
where
3G _ -4n(x-&)E(K)
3% (A-B)YA+B o
and
g—ﬁ- - m—%ﬁ—{[{x &+ Pl k) - [(x-ef +y2-nlE0) a2
where

A= (x-é)l+y2+1‘|2

B = 2oy (A.13)

In the above expression K and E represent complete elliptic integrals of the first and second kind
respectively (see e.g. Abramowitz and Stegun, 1972). More details and extensions of this
derivation may be found in Uhlman (1998).
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