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Partial cavitation of high-speed axisymmetric bodies is modeled using a steady potential-

lvan N. Kirschner flow boundary-element technique. The effects of several key parameters defining the ve-
hicle geometry are examined for configurations consisting of a disk cavitator followed by
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variations in the radius of the cylindrical section. The results for the partially cavitating
case are also compared with those for the supercavitating case.
[DOI: 10.1115/1.1852473

Introduction namic condition on an assumed cavity boundary. The kinematic

- . o . oundary condition was then used to update the cavity shape.
At sufficiently high-speeds, cavitation will occur on the surfaclé) Beginning in 1994, two numerical hydrodynamics models were

of submerged bodies at the point where the. local pressure dropﬂ&/eloped by the authors for axisymmetric supercavitating high-
the value of the vapor pressure of the ambient fluid. If the Cav'tgbeed bodies: A slender-body theory mogiérghese et al12))
tion number is sufficiently low, a supercavity will form that COVers, 4 4 boundéry-element modéirschner et al.[13]; Uhfman
the entire vehicle. Partial cavitation occurs for such bodies anl [14]). The results of both the slender-body'thec;ry model and
lower speeds, for example, those characterizing a launch transi?'%. Boundary-element model have been compared with other nu-
Partial cavitation may also occur during flight when maneuverirmerical and experimental results, with good agreement. Specifi-
of the v_ehicle is necessary. Partial ca\{ities can t_)e created or trt%fly, both models predict the ca\}ity shape and length with good
extent increased via the use of suitably designed Vem"at'%’&curacy. The slender-body theory model presented in Varghese
systems. L et al.[12] is essentially an extension of Chou’s method. Viscous

Early research on supercavitating flows was performed by Efrg5,  corrections were incorporated and tested using both the
[1], who employed conformal mapping techniques. TUBhin-  hyaites and Falkner—Skan approximations along the wet por-
troduced the use of perturbation methods for examination of g of the cavitator, and the effects of subsonic compressible
dimensional Supercavitating ro_ws. Cuthbert and_ St[éétuspd flow were investigated using the compressible Green function.
sources and sinks along the axis of a slender axisymmetric bogy;o boundary-element model was employed to examine super-
cavity system, along with a Riaboychinski cavity closure mod qvitating flows past disk-, cone-, and sigma-shaped cavitators.
They solved for the unknown cavity shape, but were success@llcy predictions are in good agreement with experimental and
only for a few cases. Brenng#] employed a relaxation method gpa\ytical results, as is summarized, for example, in Savchenko
in a transformed velocity potential-stream function plane for ang; g/’ [15].
lyzing axisymmetric cavitating flows behind a disk and a sphere geyeral researchers have modeled partially cavitating flows us-
between solid walls. Cholb] extended the work of Cuthbert anding nonlinear boundary-element techniquéthiman[8,9]; Kin-
Street[3] to solve axisymmetric supercavitating f_Iows using sleMas and Fing10,11)), but most of this work has addressed only
der body theory. He solved the problem by locating sources aloRgqrofoils. During preparation of this paper, the authors became
the body-cavity axis and control points along the body-cavity Sugware of boundary-element modeling of axisymmetric flows re-
face. A nonlinear i_ntegro-_d_ifferential equ_ation was formed by in'benﬂy performed in the Former Soviet Union by Krasrd].
posing the dynamic condition on the cavity boundary. He assumegle formulation of a partial cavitation model for high-speed bod-
a conical cavity profile near closure to simplify the equation. jes follows the same methodology used in the supercavitation

Vorus 6] addressed the problem of supercavitating flows usingbundary-element model, wherein sources and normal dipoles are
a Laurent series for the cavity shape, resulting in a more realisgigtributed along the body-cavity surface. The unknown values of
cavity closure model, being the lowest-order representation oftge source and dipole strengths are then obtained using the mixed
re-entrant jet. His results showed differences in the predicted dragadholm integral equation that results from the application of
compared with those of Chou. Kur[@] attempted to solve the Green's third identity. The authors’ preliminary formulation and
slender body problem in the same way as Chou did, except thatdgly results of an effort to develop such a method were presented
employed a spectral method with modified Chebyshev polynoniy arghese17] and in Varghese and Uhimda8].
als. He successfully solved the problem for specific numbers of
collocation points. Mathematical Formulation

Nonlinear boundary-element models were developed for cavi-
tating flows about hydrofoils by Uhlmaf8,9], and Kinnas and
Fine[10,11], among others. They distributed sources and norm
dipoles along the body-cavity surface. The unknown values
these sources and dipoles were determined by imposing the

The physical problem of partial cavitation is shown in Fig. 1.
gpe cavitator shown in this figure is a disk, but the model is

§pable of handling general axisymmetric cavitator and body ge-

metries. The body length i&, and the cavity length i$.. For

e partially cavitating case, the body extends beyond the cavity
Commibuted by the Fluids Engineering Division | bicat —— closure point. The bodies considered in this article consist of a
OF FSSIIS)ISUE‘IB\IG|NyEEF?INGuIMzmunsgcl:;;[e:ancgeivglclisllaci/nthc:v=r IgllilidlgaElr?gir?;ering Divisiontr.unca‘ted (_3II’CU|aI‘ cone frustum followed downstream by a right
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ducted by: S. Ceccio. abuts the downstream face of the cavitator. The maximum diam-
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Fig. 1 Partial cavitation problem

eter of the cone frustum is equal to the diameter of the cylinder, U=1+o )
which terminates in a flat base. For the bodies discussed herein,

the diameter of the upstream face of the truncated cone frustunwisere o is the cavitation number. A dynamic condition for the
equal to the diameter of the cavitator. The edge of the disk Ca‘ﬁotential on the cavity boundary results by integrating E).
tator always defines a salient locus of separation. As is discussgfivnstream along the cavity boundary from the cavity detach-
below, under certain conditions cavities can originate at pointsent point. The kinematic boundary condition specifies that no
along the body profile other than the cavitator; however, the caiow cross the body-cavity boundary

ties that have been studied here originate from the edge of the

cavitator. The body radius is defined as the radius of the cylindri- 2]

cal portion of the hull. The forebody cone angle is the semiangle an — Ny (3)

of the conical portion of the body and the cone—cylinder intersec-

tion is the location where the body changes from a conical to1&e no net flux condition
cylindrical shape.

Much technical literature has been devoted to the conditions at Ap(X)
cavity closure, where simultaneous satisfaction of the dynamic ﬁg an
and kinematic boundary conditions requires special treatment. S
(See, for example, Tulip19].) For the current investigation, the . . .
cavity is closed with a modified Riabouchinski cavity terminatiofs &S0 required to make the problem determinate. .
wall. (Application of this termination model for the axisymmetric The solution is determined iteratively starting with an initial

boundary-element method is discussed in detail in Kirschner et approximation for the cavity shape, V.VhiCh can be as simple as a
[13]. An improved re-entrant jet closure model is presented i @ight line from the edge of the cavitator to the outboard end of
Uhlman et al[14].) a small(but otherwise arbitrapyRiabouchinski wall. The panels

All quantities in the following formulation have been madé® distributed along the cavitator, the cavity, the Riabouchinski

dimensionless with respect to fluid density, cavitator diameter, al I a_nd the_\(ehicle body aft_of the cavity. By imposing_ the
free-stream velocity. The flow field is governed by Laplace’dynamic condition over the cavity bounddispecified as the in-
equation tegration of Eq.2) downstream along the cavity boundary from

the cavity detachment poijtapplying Green'’s third identity/Eq.
V2h=0 (1)] at all panels along the body-cavity surface, and imposing the
no-net-flux conditionEq. (4)] on all wet surfaces, a system of
eequations is obtained. This system is solved for the disturbance
potential along the wet portions of the boundary and on the

ds=0 (4)

The total potential®, is the sum of free-stream potential and th
disturbance potentialp

O=x+¢ Riabouchinski wall, the normal derivative of the disturbance po-
. . , ) tential along the cavity boundary, and the quantiff+o.
The disturbance potential also obeys Laplace’s equation. Whereas in physical experiments the cavity length is a result of

‘The disturbance potential satisfies Green's third identity. Thuge cavitation number associated with the operating conditions, in
with the normal directed out of the fluid, the disturbance potentighe current method it is convenient to specify the cavity length
at any point on the body-cavity surface can be computed fromang compute the cavitation number as part of the solution. The

P cavity length can then be predicted for a specified cavitation num-
2ﬂ¢(x)zfjgg ¢(X’)%G(X.X') ber via iteration, if desired. Once the solution is obtained, the
S
G ! {9 ’
(xx") == (X')

cavity shape is updated to satisfy the kinematic condition(8q.
and the Riabouchinski wall height is adjusted accordingly to form
ds(x’) L @ closed profile. The iterations_, continue uptil the cavity she}pe has
converged. A flow chart of this computational procedure is pre-
sented in Uhlman et al14]. Nonuniform panel spacing is used in
many locations, in order to reduce the number of panels without
reducing the accuracy of the solution. The number of panels along
the Riabouchinski wall is allowed to vary as the wall height
changes with iteration on cavity geometry. To ensure good accu-
The dynamic condition on the cavity boundary is derived fromacy of the results, the distribution of panels along the wet after-
Bernoulli's equation, which can be used to derive the followingody is modified as well, such that the ratio of neighboring panel
expression for the total velocity along the cavity surfadg; lengths is constrained to values between 0.5 and 2.0.

where the Green'’s functiorG, is

G(x,x")= *=x]
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From the converged disturbance potential along the body-cavity 4
surface, the disturbance velocity components are calculated as CDp=; jg CpnydS
s

:ﬁ d :@ The viscous contribution to the drag coefficient along the wet
X Yoo portions of the conical and cylindrical body areas is calculated

o ] o ] using the ITTC equatiolsee, for example, Newmd@a1]) for the
The total drag coefficient of a partially cavitating body is comfriction coefficient,c; . The viscous drag is

puted as the sum of the pressure drag and the viscous drag. For the
configurations of interest in this article, the pressure drag can be 4 %
Sw

Uy

cis,dS

additionally subdivided into two componentd) A component CDV:; )
ette

due to the pressure acting over the cavitator and the body forward
of the base; and(2) the drag due to the pressure acting on thBor base-separated flows, the base drag coefficient may be esti-
base of the cylinder. With this breakdown, the pressure force nizated using an empirical formula found in Hoerfi2@]

computed by integrating the product of the pressure and the axial

component of the local unit normal vector over the cavitator and ~ 0.0292by,6d° 5)
the body forward of the cylinder—base intersection. For short cavi- Db™ /_CD
v

ties, the forward part of the body is subject to cavity pressure, and

a variable pressure acts downstream of the cavity closure poiwhereby,s.is the dimensionless body radius at the base. For base-

For longer cavities, more of the body is subject to cavity pressui@avitating flows, the base drag coefficient is simply the integral

At low enough values of the cavitation number, the cavity is largever the base area of the cavity pressurg,ase (Which may, in

enough to envelope the entire forebody, so that the forebodygeneral, be different than the cavity pressure at the cavitagpr,

subject to the constant value of cavity pressure over its entifdis integral can be expressed as

length. Note that, under certain conditions, a second cavity could 2

form at the cone-cylinder intersection. However, for the relatively C _8bbasé7base

gentle cone angles considered herein, it is assumed that the flow in Db~ puz -’

this region is more likely to separate than to cavitate, justifying -

the assumption of a single cavity originating at the cavitator. ~With either of these formulas, the total drag coefficient is given by
The pressure acting at the base of the cylindrical portion of the ComCr 4 Co 1 C

body depends on the conditions of the flow and the operation of D™ ~Dp " ~Dv T ~Db:

the model under consideration. For an unventilated system, the

base flow can cavitate or not, depending on the cavitation numbeFSUltS

For example, at high cavitation numbers, the flow will separate atThe model described above was exercised to investigate various

the cylinder—base intersection, allowing the velocity to remaieffects associated with the body geometry. Selected results are

finite in this region without formation of a cavity. In this condi-discussed, an@ivhere possiblecompared with experimental data

tion, the time-averaged pressure acting over the base is gredteind in the technical literature.

than vapor pressure and relatively constant. The base drag may be . - .

approxifnatgd from semiempirica)llformulas available in thge tec>t/1- 8aV|ty C'OS“FG on the Cylindrical Portion of th.e Body. .TO

nical literature for base-separated flowSee, for example, Ho- isolate the_basm effect of bOdY length and radius, a profile was

erner[20].) To complicate the analysis, cavities can be ventilate§<'ected with a very short conical forebody, such that the cavity

moreover, in the partially cavitating case, the ventilation cond'?gwa1ys closed on the cylindgbut not so blunt as to intersect the

tions at the base need not be identical to those at the cavitaﬁﬁyity boundary. These results were compared with the baseline

Finally, at very low values of the cavitation number, a supercavi E.e of sgpelzcawtatmnt. h ¢ di ol body radi
will form that envelopes the entire body, and the pressure actin Igure = shows cavily shapes for a dimensioniess body radius

on the base is simply cavity pressure. Thus, the general flow c -9 for different values of the cavity length. The dimensionless
requires consideration of a large number of combinations of co ody length in eallctr; c()jf thes_e gases_,tV\{gs 40. Tlge C_avgy Ieggtr; for
ditions, an undertaking that was beyond the scope of the curr rﬁ?se cases is plotted against cavitation number in Fig. 3, along

investigation. However, for the important case of nonventilatef h two formulas commonly used to predict the length of super-

base flow, for which the base pressure cannot fall below Vap%z?vities. The first of these formulas is Garabedian’s well-known

pressure, the base drag is bounded above by its value in the bﬁgylt, derived from first principles, which captures the functional

6

. " : dence of the cavity length on the cavitation number and on
cavitating flow condition. Conversely, since pressure recove pen - . .
over the base is limited by separation, the base drag is boundB@ Sauare root of the drag coefficie@arabediani22]):

below by its value in the base-separated flow condition. For the ¢ 1 1
vaporous base cavitation, as the cavitation number decreases, a —f=Z/CpcIn=
ring cavity will form over the outboard region of the base, so there d. o g

exists a range of the cavitation number over which the base digfiere d. is the cavitator diameter. The second formula plotted
will take some intermediate value between the lower bound repr Fig. 3 is a semiempirical result found in May975, Egs.

resented by the value for base-separated flow and the upper bopg)d (13):
represented by the value for base-cavitating flow. As the cavitation '
number continues to decrease, eventually the base cavity will c _
grow to cover the entire base, and the value of the base drag d_c:VCDc(1-24CT 1123-0.60).
coefficient can be computed by integrating the base cavity pres- )
sure over the base. This effect will be discussed in more detddRy’s formula also captures the square-root dependence of cavity
below, in the context of some specific results. length on drag, while the dependence on cavitation number is
The pressure can be Computed from Bernoulli's equation based on a fit of eXperimental data. For partial CaVitatiOn, as in the
case of supercavitation, the cavitation number decreases with in-
Cp= 1-¢? creasing cavity length. However, it can be seen that, over most of
the range, the cavity at a given cavitation number is shorter for the
whereq is the magnitude of the dimensionless local fluid velocitgase of partial cavitation than when the flow is not complicated by
vector. The pressure contribution to the drag coefficiertlusive the presence of the wet afterbody. The difference between the
of base dragmay then be computed as results for partial cavitation and either of the formulas for super-
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Fig. 2 Cavity shapes for different cavity lengths (dimensionless body radius: 0.9; dimension-
less body length: 40 )

cavitation is significantly greater than the difference between tipeessure along the cavitator falls from its value at the stagnation
two formulas for supercavitation themselves, especially for cayioint at the center of the cavitator and is continuous across the
tation numbers greater than=0.1. edge of the cavitator, at which point the value has dropped to
An intuitive explanation of the physics underlying this effect i<avity pressure. The pressure rises to its stagnation value at the
based on the conditions at cavity closure. Although this region iistersection of the Riabouchinski wall and the bddythe cavity
generally unsteady for the axisymmetric flow conditions studiedoses on the bodyor on the Riabouchinski wall at the axis of
herein, the Riabouchinski wall model approximates the timesymmetry(for a supercavity For partial cavitation, the pressure
averaged cavity behavior by allowing for pressure recovery at theefficient downstream of the cavity closure point gradually ap-
cavity end. In the case of supercavitation, stagnation pressure ausaches zero along the cylindrical body as the flow velocity ap-
only on the axis of symmetry. For the partially cavitating flowproaches that of free-stream, then drops rapidly near the base—
currently considered, however, the locus of stagnation is a circleafinder intersection. Note that this low-pressure spike should be
the intersection of the Riabouchinski wall and the wet afterbodgonsidered an artifact of the simple model implemented at the
Thus, the high-pressure region near cavity closure is more extéase: A more physically realistic approach would properly account
sive, an effect that leads to shorter cavities. for flow separation in that region. The current model is deemed to
Further insight concerning these effects can be gleaned frdoa acceptable, except when cavity closure occurs very close to the
Fig. 4(a), which presents surface pressure distributions for a ddase, at which point the nonphysical localized low pressure at the
mensionless body radius of 0.8 for two different values of thessumed cylinder-base intersection probably results in cavity
partial cavity length and for the case of supercavitation. The pldengths that are somewhat overpredicted. Also note that a low-
in Fig. 4(b) present the associated body-cavity geometry for th@ressure spike is predicted at the cone—cylinder intersection if the
same three flow cases. Figuré@palso gives an idea of the dis- cavity closes upstream of this point. In a real flow, viscous effects
tribution of panels along the surface. Note the increased pamebuld lead to a separation bubble at this point, which would tend
density where pressure gradients are large. It can be seen thattthenitigate this spike. Alternatively, low pressure in this region

Dimensionless 40 100
Cavity Length
30 \\
20 supercavitation: 10 \ ]
May partial cavitation "\\\
0 / Garabedian - w — { May
percavitation -
partial cavitation - Garabedian
0 1
0.00 0.05 0.10 0.15 0.20 0.25 0.01 0.10 1.00
Cavitation Number Cavitation Number b
a

Fig. 3 Cavity length versus cavitation number on (a) linear and (b) logarithmic scales (dimensionless body radius: 0.9;
dimensionless body length: 40 )
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Fig. 4 (a) Surface pressure distribution and  (b) cavity shape for different cavity lengths (di-
mensionless body length: 5; dimensionless body radius: 0.8 ); see text for discussion of pres-
sure spikes

could be associated with a second cavity. Neither effect has beemhe decrease in the Riabouchinski wall height with increasing
addressed with the current model, so it is expected that the cauwydy radius provides information concerning the maximum body
length is slightly over-predicted for cases in which closure occutiat can be accommodated by a partial cavity for a given cavita-
just upstream of the cone—cylinder intersection. tion number. With further increase in the body radius, negative
Figure 5 presents cavity shapes at a constant cavity length {gflues of the Riabouchinski wall height were obtained, so that the
the body radii ranging from 0.5 to 1.3. Here the cavity length is 390nverged cavity shape actually intersected the body, suggesting

and the body length is 40. Ch?nges in the fcavity_ shape are mygh: sich a cavity is not physically realizable. Over most of the
more apparent _dov_v_nstrear_n of the point of maximum cavity ray, . meter space studied, this occurred when the body radius was
dius, although significant differences can also be observed so

what forward of this point feater than approximately 1.3 times the cavitator diaméter
Figures 6a) and ({tf; présent the Riabouchinski wall height a within the resolution tested; that is, for increments of a dimension-
Ii%ss body radius of 0)1as is depicted in Fig. 7. When the cavity

a function of the body radius and cavity length, respectively. X g
Fig. 6a), the Riabou)éhinski wall heigt?t/ is glotted ggainstythé: osure location was very close to the aft end of the body, negative

body radius for values of the cavity length of 10, 20, and 30. [Riabouchinski wall heights occurred at lower values of the body
can be seen that, for all cavity lengths, the Riabouchinski wdfdius; for longer bodies, this effect occurred at lower ratios of the
height decreases with increasing body radius. The curves &aity length to the body lengtiiNote, however, that the results
somewhat jagged, especially for a body radii greater than 1 ca{@r very long partial cavities—approaching the body length—are
tator diameter. This may be due to discretization error. Figiing 6 not entirely accurate, because cavitation or separation at the base
shows the variation of Riabouchinski wall height with cavityof the cylinder has not been properly modeled. The effects of this
length for two values of the body radius. The wall height is seeteficiency are considered negligible for lower values of the ratio
to decrease with increasing cavity length. of cavity to body length.
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Fig. 5 Cavity shapes for various body radii (dimensionless body length: 40;
dimensionless cavity length: 30 )

At least from a numerical perspective, limitations also apply toumber limits of two formulas presented in M&23]. One of
the minimum cavity length for a given body radius. Figure &hese is May’s own semiempirical formula, and the other is Gara-
shows the minimum cavity length for which convergence wadsedian’s theoretical formulg22]. A dimensionless body radius of
achieved as a function of the body radius. When the current analy5 is the case where the cavitator and cylinder diameters are the
sis was applied to flow cases with shorter cavities than this mirdame, the so-called “zero-caliber ogive” for which partial cavita-
mum value, nonphysical cavity shapes resulted, characterizedtimn experiments were performed by Billet and We2d]. Figure
nonconvex profiles. It can be seen that this minimum cavity lengffib) presents the cavity length versus cavitation number for this
increases with increasing body radius. case for the current methdthbeled “0.5"), for the curve fit rec-
Figure 9a) presents the cavitation number versus the caviymmended iff24] for their experimental results:
length for different body radii. The dimensionless body length is
again 40. Except for the case of supercavitat@tody radius of €. (0.751 107
zero, the cavity closes on the cylindrical portion of the body. The d_c -
cavitation number decreases with increasing body radius. As the
cavity length increases, each curve asymptotically approaches #imel for the semiempirical formula for supercavitation recom-
supercavitation result, which agrees well with the low-cavitatiormended in May[23]. It can be seen that, although the current

o
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Fig. 6 Riabouchinski wall height versus (a) body radius and (b) cavity length
(dimensionless body length: 40 )
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Fig. 7 Maximum body radius (resolved in increments of 0.1 ) for nonnegative Riabouchinski
wall height as a function of cavity length

results fall between the two sets of experimental data, the trend idt is often useful to have available a simple approximate for-
somewhat closer to the partially cavitating case, suggesting tmatila relating cavity length to cavitation number. For the case of
part of the difference between the data sets presentg2Birand supercavitation, many such formulas are available, notably Gara-
in [24] can be explained by the presence of the body in the latteedian’s theoretical formul22] and May's semiempirical for-
case. Other differences may be attributable to any difference rifula[23] shown in Figs. 3 and 9. Such a formula is proposed in
body length between the flow case associated with Rig. @d  the Appendix for the case of a partial cavity terminating on the
the actual model length of Billet and We(t975, which is not  cyjindrical portion of the body.

stated in their publication. Also, the physical flow conditions at

the model base and the presence of a strut and tunnel walls are nétavity Closure on the Conical Forebody. The pressure dis-
accounted for in the current model. Although the presence oftrbution for closure on the conical forebody of a selected configu-
body will be less important for cylinders of the smaller radii, it igation was discussed above in connection with Fig. 4. Figure 10
suggested that the current method could be used to correct expprésents the effect of the body radius if the cavity closes on the
mental supercavitation data for the presence of a downstreannical portion of the body. It can be seen that a much longer
sting. cavity is generated for supercavitation than for the partially cavi-

Minimum 6 T
Dimensionless |
Cavity Length 5

0.0 0.5 1.0 15
Dimensionless Body Radius

Fig. 8 Minimum cavity length for which convergence was achieved versus
body radius (dimensionless body length: 40 )
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Fig. 9 Cavity length versus cavitation number (a) for bodies of different radii
(dimensionless body length: 40 ); (b) comparison with the zero-caliber ogive
experiments of Billet and Weir  (1975)

tating case at the same cavitation number. For a constant cavjihysically realizable. Hence a jump in the cavity length is re-

tion number, the cavity length decreases slightly with increasimired at this point. For the other two cone angles shown in Fig.
body radius, especially at lower cavitation numbers. The seniil, the cone—cylinder intersection is further downstream, so the
empirical results from May23] are also presented in the figurecavity is large enough to envelope that point as the cavity length
for purposes of comparison with the case of supercavitation. increases continuously with a decrease in the cavitation number;

In Fig. 11(a), the cavitation number versus the cavity length ithus continuous curves result. Note, however, the very apparent
plotted for three different cone angles: 4.77 deg, 9.55 deg, addange in the slopes of the curves, even for the 9.55 deg cone
15.92 deg. The dimensionless axial coordinates of the conargle, as the cavity closure point moves from the cone to the
cylinder intersection for each of these bodies are 8.38, 4.16, anyinder in each case. This effect is emphasized in Figh)11
2.46, respectively. The body length is 80 and the cavity closes amere the reciprocal of the cavitation number is plotted versus
either the conical or the cylindrical portion of the body. For coneavity length for each of the body profiles. This figure clearly
angles of 4.77 deg and 9.55 deg, a continuous curve is obtainsdows either discontinuous or slope-discontinuous behavior when
But for 15.92 deg, the curve is discontinuous for values of thibe cavity closes at the cone—cylinder intersection, depending on
cavity length between approximately 2 and 6. the cone angle.

This can be explained by referring to Fig. 12, where the cavity Although the current analysis does not address ventilation ef-
shapes for different cavitation numbers are shown for this cofects, such behavior may be related to the hysteresis effect dis-
angle. The cavity shapes for cavity lengths 4 and 5, even thougissed in Semenenka5]. This effect, which was discovered and
they are shown in the figure, intersect the body and so are riovestigated experimentally, involves the behavior of nominally
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Fig. 10 Cavity length versus cavitation number for cavity termination on the conical forebody,
comparing partial cavitation with supercavitation (dimensionless body length: 80; cone angle:
6.96 deg)

axisymmetric ventilated cavities that close on an axisymmetréiscontinuous profile is associated with discontinuities in the re-

body profile with slope discontinuities. Specifically, Semenenkationship between the required ventilation rate and the cavity

claims that the ventilation rate required to maintain a cavity of length. Figures 11 and 12 herein provide qualitative evidence of a
given length depends on the angle that the cavity boundary malséwmilar dependence on the angle that the cavity boundary makes
with the body profile near closure. Since this quantity depends, with the body profile near closure. This result suggests that the
turn, on the slope of the profile and the cavity length, a slopeffect discussed if25] involves the relationship between the cavi-

Dimensionless 10.0
Cavity

Length 1552 \ cone angle (degrees)
\ N \-\>
1.0 < 9.55 \
Non-physical solution fo\ 15.92

15.92-degree cone angle

(see text)
0.1
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Cavitation Number
a
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=
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g
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o Intersection 246
% 6 15.92
z
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g Angle
2 - :
9.55
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0
0 2 4 6 8 10
Reciprocal of Cavitation Number b

Fig. 11 Cavity length versus (a) cavitation number and (b) reciprocal of cavi-
tation number for three different cone angles (dimensionless body length: 80;
dimensionless body radius: 1.2 )
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Fig. 12 Numerical analysis of high-speed bodies in partially cavitating flow

tation number and the cavity length directly, although it is cleareases. Note that all these computations were performed for a
that the required ventilation rate must also be affected. Applicaingle, arbitrarily selected value of the Reynolds number.
tion of the current model to the body profiles discussed by Seme-In Fig. 14, the drag associated with the nonphysical solutions
nenko for purposes of a more direct comparison was beyond tloe values of the cavity length between 2 and 6 is not shown,
scope of this effort. although the pressure and total drag coefficients show a tendency
Drag coefficients for bodies with cone angles of 9.55 deg artidward reduced values just outside this range, so that the qualita-
15.92 deg are plotted in Figs. 13 and 14, respectively, brokéme behavior is similar to that described in Fig. 13.
down into the components described above. For these examples, the local minimum in the forebody pressure drag coefficient as
was assumed that the flow at the cylinder base was separatéd,cavity closure point approaches the cone—cylinder intersection
rather than cavitating, and the base drag component was computatesents two primary competing effect$) A decrease in the
using Eq.(5). The pressure drag in Fig. 13 decreases as the caviéngth of the conical forebody that is exposed to elevated pres-
closure point approaches the cone—cylinder intersection and tleemes downstream of the cavity closure point; d2dthe increase
increases slowly as the cavity length increases. This behaviorinscavity pressure relative to ambient as the cavitation number
reflected in the total drag, since the pressure drag is a significamtreases, which results in increased drag on the forebody. It can
component, and the other components change only slowly witle seen from Fig. 4 that the fraction of the forebody length that is
changes in the cavity length. As is to be expected, the viscous degosed to pressures higher than static pressure is reduced as
decreases with increasing cavity length while the base drag mere of the cone is enveloped by the cavity. Once the cavity

Drag 25
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20 | e total

——
15 | e S e —
10 b—o 3 friction
05 ] base

———
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0.0 :
0 2 4 6 8 10
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Fig. 13 Drag coefficient versus cavity length (dimensionless body length: 80;
dimensionless body radius: 1.2; cone angle: 9.55 deg; Reynolds number:
3.0e7)

50 / Vol. 127, JANUARY 2005 Transactions of the ASME



Drag 25
Coefficient
20 " TS| PR
]
| total
16 b——-o-
|
I o
10 T friction
2 =1 no solution (see text) ]
| |
|
base
05 —
\ TREh—
ressure e
0.0 s
0 2 4 6 8 10

Dimensionless Cavity Length

Fig. 14 Drag coefficient versus cavity length (dimensionless body length: 80;
dimensionless body radius: 1.2; cone angle: 15.92 deg; Reynolds number:
3.0e7)

closure point reaches the cone—cylinder intersection, no furthtee increase in base drag is associated with the increase in the
decrease can occur, since the cone is completely enveloped. Tét@® of base area to cavitator area. The forebody pressure drag
minimum pressure drag should, therefore, be observed when tagies under the influence of two primary competing effetts:
cavity and cone lengths are equal; the cavity increments usedTioe increase in the wet area of the conical forebody that is ex-
produce the curves in Fig. 13 were not quite sufficient to resolymsed to elevated pressures downstream of the cavity closure
the pressure minimum exactly, although the basic behavior is cqgint; and,(2) the increase in the wet area of the conical forebody
tured. The dip in the total drag coefficient as the cavity closuexposed to the low-pressure spike near the cone—cylinder inter-
point approaches the cone—cylinder intersection does not redseetion. At this cavitation number, with the cavity enveloping a
the drag to values associated with supercavitation. In that caBagction of the cone, the first effect leads to a slight increase in the
there is no base drag as currently defined, friction drag is negtiressure drag coefficient until a dimensionless body radius of ap-
gible, and the total drag is simply the cavitator drag for a disk, ggroximately 1.8, at which point the effect of the low-pressure
that the total drag coefficient based on cavitator projected arggike begins to dominate and the pressure decreases.
takes a value approaching 0.82—0(8éde, for example, Maj23],
Kirschner et al[13], Uhiman et al[14], and many othejs The Effect on Drag of Flow Conditions at the Cylinder Base
Figures 15 and 16 show the effects of body radius when ties discussed above, the base and total drag coefficients depend on
cavity closes on the conical portion of the body at constant valute type of flow occurring at the base of the cylinder: Base-
of the cavitation number. Once again, the base drag was compusegarated flow, in which case the base drag is computed using Eq.
using Eq.(5), assuming that the flow is base-separated, rather thés), or the base-cavitating flow, for which E¢6) applies. In re-
base-cavitating. For this example, the cavitation number was fixelity, the base drag coefficient can fall somewhere between these
at 0.15, the dimensionless body length was 80, and the cone artgle values, depending on the extent of cavitation over the cylin-
was 15.92 deg. As for the case of cavity closure on the cylinderder base. Thus, the base-separated and base-cavitating flow cases
can be seen in Fig. 15 that the cavity length decreases with nepresent limiting values that are useful for the purposes of esti-
creasing body radius. Figure 16 shows that all the drag compmating the total drag on a partially cavitating body.
nents except the pressure drag increase with increasing body raAs an illustration of this behavior, the base and total drag co-
dius over the range considered. The increase in friction drag is defficients were predicted for a partially cavitating body with a
to the increase in the ratio of wet area to cavitator area. Similarlfimensionless length of 40 and a dimensionless cylinder radius of

Dimensionless 1.5 ‘ ,
Offset ‘!
maximumbody radius
f o —— [
o5 ;
0.0
0.0 0.5 1.0 15 20
Dimensionless Axial Coordinate
Fig. 15 Cavity shapes for different maximum dimensionless body radii (di-
mensionless body length: 80; cavitation number: 0.15; cone angle: 15.92 deg )
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Fig. 16 Dimensionless cavity length and drag components versus dimensionless body radius
(dimensionless body length: 80; cavitation number: 0.1; cone angle: 15.92 deg )

0.9, subject to base-separated and base-cavitating flow. For efmrhbase separation shown in Fig. 17, and eventually follow the
of these two cases, it was assumed that the forward cavity closeave for base cavitation as the base flow became fully cavitated.
on the cylindrical portion of the body. For the case of the bas&he total drag coefficient is similarly limited.
cavitating flow, it was assumed that cavity pressure at the base antf the cavities at the cavitator and at the base are subject
at the cavitator were equal. The results are presented in Fig. 1f0 unequal values of cavity pressure, as can occur for a ventil-

It can be seen that as the cavitation number decreases wvated system, results such as those presented in Fig. 17 must be
increasing cavity length, the base drag coefficient for the baseedified.
cavitating flow case also decreases in accordance with(@q.  The results for the base-separated flow case are presented as an
Assuming that the semiempirical formula, Ef), is applicable, a engineering approximation based on a semiempirical formula for
generally opposite trend applies to the base-separated flow cdke.drag coefficient. This formula is a rather simplified expression
These trends are reflected in the total drag coefficients. It is thinat does not involve body length as a parameter, nor does it
apparent from Fig. 17 that the total drag coefficient is very depeaecount for the occurrence of cavitation. Such complications war-
dent on the base flow conditions. Therefore, in applying thesant additional modeling and experimental validation to improve
results, several cautions must be noted, as follows: predictions such as those presented in Fig. 17.

As discussed above, the pressure in the fluid cannot fall below
vapor pressure. Thus, the base drag coefficient cannot achieve a .
value higher than the value computed for the case of the ba onclusions
cavitating flow with the cavity pressure equal to vapor pressure.A physics-based model of partial cavitation has been developed
Thus for the example results presented in Fig. 17, the base dfag axisymmetric flows. The model has been applied to a disk
coefficient for the base-separated flow case is nonphysical for davitator with a simple body profile consisting of a conical fore-
mensionless cavity lengths greater than approximately 13.6. Fawrdy abutting a cylinder. The effects of the body radius and fore-
longer cavities, cavitation would begin to occur over the base, abddy cone angle on the cavity shape and length, the cavitation
the base drag coefficient would begin to depart from the curveimber, and the body drag were studied. The model predicts that,

Drag 25
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15 [ . b total drag - —|
10 |-

base drag
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0.0 :
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Fig. 17 Base and total drag coefficients versus cavity length (dimensionless

body length: 40; dimensionless body radius: 0.9; Reynolds number: 3.0e7 )
comparing the base-separated and base-cavitating flow cases
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Fig. 18 Bivariate surface fit of cavity length as a function of cavitation number and cylinder
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(7); original numerical data plotted as markers )

for fixed cavitation number, partial cavities are generally shorter D = total drag on the body
than supercavities for the same cavitation number over the regime D,, = base drag at the aft end of the body
investigated. The model also predicts that, for a given cavitation D, = cavitator drag for a supercavity
number, cavity length decreases and drag increases with an in-D, = pressure drag on the body excluding base drag com-
crease in the body radius over most of the parameter space inves- ponent
tigated. A dip in the pressure drag coefficient occurs as the cavi- D, = viscous drag on the body
tation number decreases and the cavity termination point d. = cavitator diameter
approaches the cone—cylinder intersection. However, discontinu- €, = body length
ous cavity behavior can also occur at such an operating point, €, = cavity length
depending on the forebody cone angle. It is proposed that thi&(b) = coefficients used in surface fit of computed results
effect is related to experimental observations of other researchers p, = cavity pressure at cavitator
involving ventilation hysteresis effects. Pcbase = Cavity pressure at cylinder base, for base-cavitating
flows
Acknowledgments p. = free-s_tream ambient pressure
= magnitude of local fluid velocity vector

. . ) q
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ity pressure at cylinder base
= total potential

Nomenclature

A, = cavitator projected area Obase —
b(x) = body-cavity radius at axial locatiox
bpase = radius of cylindrical portion of body

b;; = coefficients used in surface fit of computed results # = disturbance potential
Co — total drag coefficientD/2 pU2A,
Cob = pase(pressurgdrag coefficientD /2 pU2A, Appendix: Parametric Surface Fit of Partial Cavity
Cpc = cavitator drag coefficient for a supercavity, Characteristics
DJ/3pUZA It is often useful to have available a simple approximate for-
Cop = pressure drag coeﬁiciermplépuiAc mula relating the cavity length to the cavitation number. For the
Co ) . 10 case of partial cavitation over a cylindrical body of dimensionless
v = viscous drag coefficienD /3 pU>Ac length of 40, the following surface is proposed, based on curve fits
Ct = friction coefficient, ,,/3 pU2 of the numerical results presented above
Cp = pressure coefficient,p(— px)/%pUi IN(o(€£c,b))=€1(b)IN?(£)+€,(b)In(£;)+€3(b) (A1)
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