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Numerical Analysis of
High-Speed Bodies in Partially
Cavitating Axisymmetric Flow
Partial cavitation of high-speed axisymmetric bodies is modeled using a steady pote
flow boundary-element technique. The effects of several key parameters defining t
hicle geometry are examined for configurations consisting of a disk cavitator followe
a conical section and ending in a cylindrical body. A single cavity is assumed to deta
the edge of the disk. A variety of conditions have been studied, including cavity closu
either the conical or cylindrical portions of the vehicle, variations in the cone angle,
variations in the radius of the cylindrical section. The results for the partially cavitat
case are also compared with those for the supercavitating case.
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Introduction
At sufficiently high-speeds, cavitation will occur on the surfa

of submerged bodies at the point where the local pressure dro
the value of the vapor pressure of the ambient fluid. If the cav
tion number is sufficiently low, a supercavity will form that cove
the entire vehicle. Partial cavitation occurs for such bodies
lower speeds, for example, those characterizing a launch trans
Partial cavitation may also occur during flight when maneuver
of the vehicle is necessary. Partial cavities can be created or
extent increased via the use of suitably designed ventila
systems.

Early research on supercavitating flows was performed by E
@1#, who employed conformal mapping techniques. Tulin@2# in-
troduced the use of perturbation methods for examination of t
dimensional supercavitating flows. Cuthbert and Street@3# used
sources and sinks along the axis of a slender axisymmetric b
cavity system, along with a Riabouchinski cavity closure mod
They solved for the unknown cavity shape, but were succes
only for a few cases. Brennan@4# employed a relaxation metho
in a transformed velocity potential-stream function plane for a
lyzing axisymmetric cavitating flows behind a disk and a sph
between solid walls. Chou@5# extended the work of Cuthbert an
Street@3# to solve axisymmetric supercavitating flows using sle
der body theory. He solved the problem by locating sources al
the body-cavity axis and control points along the body-cavity s
face. A nonlinear integro-differential equation was formed by i
posing the dynamic condition on the cavity boundary. He assum
a conical cavity profile near closure to simplify the equation.

Vorus @6# addressed the problem of supercavitating flows us
a Laurent series for the cavity shape, resulting in a more real
cavity closure model, being the lowest-order representation
re-entrant jet. His results showed differences in the predicted d
compared with those of Chou. Kuria@7# attempted to solve the
slender body problem in the same way as Chou did, except tha
employed a spectral method with modified Chebyshev polyno
als. He successfully solved the problem for specific numbers
collocation points.

Nonlinear boundary-element models were developed for c
tating flows about hydrofoils by Uhlman@8,9#, and Kinnas and
Fine @10,11#, among others. They distributed sources and nor
dipoles along the body-cavity surface. The unknown values
these sources and dipoles were determined by imposing the
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namic condition on an assumed cavity boundary. The kinem
boundary condition was then used to update the cavity shape

Beginning in 1994, two numerical hydrodynamics models we
developed by the authors for axisymmetric supercavitating hi
speed bodies: A slender-body theory model~Varghese et al.@12#!
and a boundary-element model~Kirschner et al.@13#; Uhlman
et al.@14#!. The results of both the slender-body theory model a
the boundary-element model have been compared with other
merical and experimental results, with good agreement. Spe
cally, both models predict the cavity shape and length with go
accuracy. The slender-body theory model presented in Vargh
et al. @12# is essentially an extension of Chou’s method. Visco
drag corrections were incorporated and tested using both
Thwaites and Falkner–Skan approximations along the wet p
tions of the cavitator, and the effects of subsonic compress
flow were investigated using the compressible Green funct
The boundary-element model was employed to examine su
cavitating flows past disk-, cone-, and sigma-shaped cavitat
Such predictions are in good agreement with experimental
analytical results, as is summarized, for example, in Savche
et al. @15#.

Several researchers have modeled partially cavitating flows
ing nonlinear boundary-element techniques~Uhlman @8,9#; Kin-
nas and Fine@10,11#!, but most of this work has addressed on
hydrofoils. During preparation of this paper, the authors beca
aware of boundary-element modeling of axisymmetric flows
cently performed in the Former Soviet Union by Krasnov@16#.
The formulation of a partial cavitation model for high-speed bo
ies follows the same methodology used in the supercavita
boundary-element model, wherein sources and normal dipoles
distributed along the body-cavity surface. The unknown values
the source and dipole strengths are then obtained using the m
Fredholm integral equation that results from the application
Green’s third identity. The authors’ preliminary formulation an
early results of an effort to develop such a method were prese
in Varghese@17# and in Varghese and Uhlman@18#.

Mathematical Formulation
The physical problem of partial cavitation is shown in Fig.

The cavitator shown in this figure is a disk, but the model
capable of handling general axisymmetric cavitator and body
ometries. The body length is,b and the cavity length is,c . For
the partially cavitating case, the body extends beyond the ca
closure point. The bodies considered in this article consist o
truncated circular cone frustum followed downstream by a ri
circular cylinder. The upstream face of the truncated cone frus
abuts the downstream face of the cavitator. The maximum di

n
on-
005 by ASME JANUARY 2005, Vol. 127 Õ 41



42 Õ Vol. 127,
Fig. 1 Partial cavitation problem
a
s
i
a

d

o

s
m
e
e
o
i
t

a
e

h

t

n

e

ch-
no

al
s a
of

ski
e

m

the
f
nce
the
o-

t of
, in

gth
The
m-

the

rm
has
re-
n
out
ong
ht
cu-

ter-
nel
eter of the cone frustum is equal to the diameter of the cylind
which terminates in a flat base. For the bodies discussed he
the diameter of the upstream face of the truncated cone frustu
equal to the diameter of the cavitator. The edge of the disk c
tator always defines a salient locus of separation. As is discu
below, under certain conditions cavities can originate at po
along the body profile other than the cavitator; however, the c
ties that have been studied here originate from the edge of
cavitator. The body radius is defined as the radius of the cylin
cal portion of the hull. The forebody cone angle is the semian
of the conical portion of the body and the cone–cylinder inters
tion is the location where the body changes from a conical t
cylindrical shape.

Much technical literature has been devoted to the condition
cavity closure, where simultaneous satisfaction of the dyna
and kinematic boundary conditions requires special treatm
~See, for example, Tulin@19#.! For the current investigation, th
cavity is closed with a modified Riabouchinski cavity terminati
wall. ~Application of this termination model for the axisymmetr
boundary-element method is discussed in detail in Kirschner e
@13#. An improved re-entrant jet closure model is presented
Uhlman et al.@14#.!

All quantities in the following formulation have been mad
dimensionless with respect to fluid density, cavitator diameter,
free-stream velocity. The flow field is governed by Laplac
equation

¹2F50

The total potential,F, is the sum of free-stream potential and t
disturbance potential,f

F5x1f

The disturbance potential also obeys Laplace’s equation.
The disturbance potential satisfies Green’s third identity. Th

with the normal directed out of the fluid, the disturbance poten
at any point on the body-cavity surface can be computed from

2pf~x!52T
S
Ff~x8!

]

]n
G~x,x8!

2G~x,x8!
]

]n
f~x8!GdS~x8! (1)

where the Green’s function,G, is

G~x,x8!5
1

ux2x8u

The dynamic condition on the cavity boundary is derived fro
Bernoulli’s equation, which can be used to derive the followi
expression for the total velocity along the cavity surface,Us :
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where s is the cavitation number. A dynamic condition for th
potential on the cavity boundary results by integrating Eq.~2!
downstream along the cavity boundary from the cavity deta
ment point. The kinematic boundary condition specifies that
flow cross the body-cavity boundary

]f

]n
52nx (3)

The no net flux condition

T
S

]f~x!

]n
dS50 (4)

is also required to make the problem determinate.
The solution is determined iteratively starting with an initi

approximation for the cavity shape, which can be as simple a
straight line from the edge of the cavitator to the outboard end
a small~but otherwise arbitrary! Riabouchinski wall. The panels
are distributed along the cavitator, the cavity, the Riabouchin
wall, and the vehicle body aft of the cavity. By imposing th
dynamic condition over the cavity boundary@specified as the in-
tegration of Eq.~2! downstream along the cavity boundary fro
the cavity detachment point#, applying Green’s third identity@Eq.
~1!# at all panels along the body-cavity surface, and imposing
no-net-flux condition@Eq. ~4!# on all wet surfaces, a system o
equations is obtained. This system is solved for the disturba
potential along the wet portions of the boundary and on
Riabouchinski wall, the normal derivative of the disturbance p
tential along the cavity boundary, and the quantityA11s.
Whereas in physical experiments the cavity length is a resul
the cavitation number associated with the operating conditions
the current method it is convenient to specify the cavity len
and compute the cavitation number as part of the solution.
cavity length can then be predicted for a specified cavitation nu
ber via iteration, if desired. Once the solution is obtained,
cavity shape is updated to satisfy the kinematic condition, Eq.~3!,
and the Riabouchinski wall height is adjusted accordingly to fo
a closed profile. The iterations continue until the cavity shape
converged. A flow chart of this computational procedure is p
sented in Uhlman et al.@14#. Nonuniform panel spacing is used i
many locations, in order to reduce the number of panels with
reducing the accuracy of the solution. The number of panels al
the Riabouchinski wall is allowed to vary as the wall heig
changes with iteration on cavity geometry. To ensure good ac
racy of the results, the distribution of panels along the wet af
body is modified as well, such that the ratio of neighboring pa
lengths is constrained to values between 0.5 and 2.0.
Transactions of the ASME
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From the converged disturbance potential along the body-ca
surface, the disturbance velocity components are calculated a

ux5
]f

]x
and ur5

]f

]r
.

The total drag coefficient of a partially cavitating body is com
puted as the sum of the pressure drag and the viscous drag. F
configurations of interest in this article, the pressure drag can
additionally subdivided into two components:~1! A component
due to the pressure acting over the cavitator and the body forw
of the base; and,~2! the drag due to the pressure acting on t
base of the cylinder. With this breakdown, the pressure forc
computed by integrating the product of the pressure and the a
component of the local unit normal vector over the cavitator a
the body forward of the cylinder–base intersection. For short c
ties, the forward part of the body is subject to cavity pressure,
a variable pressure acts downstream of the cavity closure p
For longer cavities, more of the body is subject to cavity press
At low enough values of the cavitation number, the cavity is la
enough to envelope the entire forebody, so that the forebod
subject to the constant value of cavity pressure over its en
length. Note that, under certain conditions, a second cavity co
form at the cone-cylinder intersection. However, for the relativ
gentle cone angles considered herein, it is assumed that the flo
this region is more likely to separate than to cavitate, justify
the assumption of a single cavity originating at the cavitator.

The pressure acting at the base of the cylindrical portion of
body depends on the conditions of the flow and the operatio
the model under consideration. For an unventilated system,
base flow can cavitate or not, depending on the cavitation num
For example, at high cavitation numbers, the flow will separat
the cylinder–base intersection, allowing the velocity to rem
finite in this region without formation of a cavity. In this cond
tion, the time-averaged pressure acting over the base is gr
than vapor pressure and relatively constant. The base drag ma
approximated from semiempirical formulas available in the te
nical literature for base-separated flows.~See, for example, Ho-
erner@20#.! To complicate the analysis, cavities can be ventilat
moreover, in the partially cavitating case, the ventilation con
tions at the base need not be identical to those at the cavit
Finally, at very low values of the cavitation number, a supercav
will form that envelopes the entire body, and the pressure ac
on the base is simply cavity pressure. Thus, the general flow
requires consideration of a large number of combinations of c
ditions, an undertaking that was beyond the scope of the cur
investigation. However, for the important case of nonventila
base flow, for which the base pressure cannot fall below va
pressure, the base drag is bounded above by its value in the
cavitating flow condition. Conversely, since pressure recov
over the base is limited by separation, the base drag is boun
below by its value in the base-separated flow condition. For
vaporous base cavitation, as the cavitation number decreas
ring cavity will form over the outboard region of the base, so th
exists a range of the cavitation number over which the base
will take some intermediate value between the lower bound r
resented by the value for base-separated flow and the upper b
represented by the value for base-cavitating flow. As the cavita
number continues to decrease, eventually the base cavity
grow to cover the entire base, and the value of the base
coefficient can be computed by integrating the base cavity p
sure over the base. This effect will be discussed in more de
below, in the context of some specific results.

The pressure can be computed from Bernoulli’s equation

Cp512q2

whereq is the magnitude of the dimensionless local fluid veloc
vector. The pressure contribution to the drag coefficient~exclusive
of base drag! may then be computed as
Journal of Fluids Engineering
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CDp5
4

p R
S
CpnxdS

The viscous contribution to the drag coefficient along the w
portions of the conical and cylindrical body areas is calcula
using the ITTC equation~see, for example, Newman@21#! for the
friction coefficient,cf . The viscous drag is

CDv5
4

p R
Swetted

cfsxdS

For base-separated flows, the base drag coefficient may be
mated using an empirical formula found in Hoerner@20#

CDb5
0.029~2bbase!

3

ACDv

(5)

wherebbaseis the dimensionless body radius at the base. For ba
cavitating flows, the base drag coefficient is simply the integ
over the base area of the cavity pressure,pc base ~which may, in
general, be different than the cavity pressure at the cavitator,pc).
This integral can be expressed as

CDb5
8bbase

2 sbase

rU`
2

. (6)

With either of these formulas, the total drag coefficient is given

CD5CDp1CDv1CDb .

Results
The model described above was exercised to investigate var

effects associated with the body geometry. Selected results
discussed, and~where possible! compared with experimental dat
found in the technical literature.

Cavity Closure on the Cylindrical Portion of the Body. To
isolate the basic effect of body length and radius, a profile w
selected with a very short conical forebody, such that the ca
always closed on the cylinder~but not so blunt as to intersect th
cavity boundary!. These results were compared with the basel
case of supercavitation.

Figure 2 shows cavity shapes for a dimensionless body ra
of 0.9 for different values of the cavity length. The dimensionle
body length in each of these cases was 40. The cavity length
these cases is plotted against cavitation number in Fig. 3, a
with two formulas commonly used to predict the length of sup
cavities. The first of these formulas is Garabedian’s well-kno
result, derived from first principles, which captures the functio
dependence of the cavity length on the cavitation number and
the square root of the drag coefficient~Garabedian@22#!:

,c

dc
5

1

s
ACDc ln

1

s

where dc is the cavitator diameter. The second formula plott
in Fig. 3 is a semiempirical result found in May~1975!, Eqs.
~3!–~13!:

,c

dc
5ACDc~1.24s21.12320.60!.

May’s formula also captures the square-root dependence of ca
length on drag, while the dependence on cavitation numbe
based on a fit of experimental data. For partial cavitation, as in
case of supercavitation, the cavitation number decreases with
creasing cavity length. However, it can be seen that, over mos
the range, the cavity at a given cavitation number is shorter for
case of partial cavitation than when the flow is not complicated
the presence of the wet afterbody. The difference between
results for partial cavitation and either of the formulas for sup
JANUARY 2005, Vol. 127 Õ 43
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Fig. 2 Cavity shapes for different cavity lengths „dimensionless body radius: 0.9; dimension-
less body length: 40 …
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cavitation is significantly greater than the difference between
two formulas for supercavitation themselves, especially for ca
tation numbers greater thans50.1.

An intuitive explanation of the physics underlying this effect
based on the conditions at cavity closure. Although this regio
generally unsteady for the axisymmetric flow conditions stud
herein, the Riabouchinski wall model approximates the tim
averaged cavity behavior by allowing for pressure recovery at
cavity end. In the case of supercavitation, stagnation pressure
only on the axis of symmetry. For the partially cavitating flo
currently considered, however, the locus of stagnation is a circ
the intersection of the Riabouchinski wall and the wet afterbo
Thus, the high-pressure region near cavity closure is more ex
sive, an effect that leads to shorter cavities.

Further insight concerning these effects can be gleaned f
Fig. 4~a!, which presents surface pressure distributions for a
mensionless body radius of 0.8 for two different values of
partial cavity length and for the case of supercavitation. The p
in Fig. 4~b! present the associated body-cavity geometry for
same three flow cases. Figure 4~a! also gives an idea of the dis
tribution of panels along the surface. Note the increased p
density where pressure gradients are large. It can be seen th
JANUARY 2005
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pressure along the cavitator falls from its value at the stagna
point at the center of the cavitator and is continuous across
edge of the cavitator, at which point the value has dropped
cavity pressure. The pressure rises to its stagnation value a
intersection of the Riabouchinski wall and the body~if the cavity
closes on the body! or on the Riabouchinski wall at the axis o
symmetry~for a supercavity!. For partial cavitation, the pressur
coefficient downstream of the cavity closure point gradually a
proaches zero along the cylindrical body as the flow velocity
proaches that of free-stream, then drops rapidly near the ba
cylinder intersection. Note that this low-pressure spike should
considered an artifact of the simple model implemented at
base: A more physically realistic approach would properly acco
for flow separation in that region. The current model is deemed
be acceptable, except when cavity closure occurs very close to
base, at which point the nonphysical localized low pressure at
assumed cylinder-base intersection probably results in ca
lengths that are somewhat overpredicted. Also note that a l
pressure spike is predicted at the cone–cylinder intersection if
cavity closes upstream of this point. In a real flow, viscous effe
would lead to a separation bubble at this point, which would te
to mitigate this spike. Alternatively, low pressure in this regi
Fig. 3 Cavity length versus cavitation number on „a… linear and „b… logarithmic scales „dimensionless body radius: 0.9;
dimensionless body length: 40 …
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Fig. 4 „a… Surface pressure distribution and „b… cavity shape for different cavity lengths „di-
mensionless body length: 5; dimensionless body radius: 0.8 …; see text for discussion of pres-
sure spikes
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could be associated with a second cavity. Neither effect has b
addressed with the current model, so it is expected that the ca
length is slightly over-predicted for cases in which closure occ
just upstream of the cone–cylinder intersection.

Figure 5 presents cavity shapes at a constant cavity length
the body radii ranging from 0.5 to 1.3. Here the cavity length is
and the body length is 40. Changes in the cavity shape are m
more apparent downstream of the point of maximum cavity
dius, although significant differences can also be observed so
what forward of this point.

Figures 6~a! and 6~b! present the Riabouchinski wall height a
a function of the body radius and cavity length, respectively.
Fig. 6~a!, the Riabouchinski wall height is plotted against t
body radius for values of the cavity length of 10, 20, and 30
can be seen that, for all cavity lengths, the Riabouchinski w
height decreases with increasing body radius. The curves
somewhat jagged, especially for a body radii greater than 1 c
tator diameter. This may be due to discretization error. Figure 6~b!
shows the variation of Riabouchinski wall height with cavi
length for two values of the body radius. The wall height is se
to decrease with increasing cavity length.
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The decrease in the Riabouchinski wall height with increas
body radius provides information concerning the maximum bo
that can be accommodated by a partial cavity for a given cav
tion number. With further increase in the body radius, negat
values of the Riabouchinski wall height were obtained, so that
converged cavity shape actually intersected the body, sugge
that such a cavity is not physically realizable. Over most of
parameter space studied, this occurred when the body radius
greater than approximately 1.3 times the cavitator diameter~to
within the resolution tested; that is, for increments of a dimensi
less body radius of 0.1!, as is depicted in Fig. 7. When the cavit
closure location was very close to the aft end of the body, nega
Riabouchinski wall heights occurred at lower values of the bo
radius; for longer bodies, this effect occurred at lower ratios of
cavity length to the body length.~Note, however, that the result
for very long partial cavities—approaching the body length—a
not entirely accurate, because cavitation or separation at the
of the cylinder has not been properly modeled. The effects of
deficiency are considered negligible for lower values of the ra
of cavity to body length.!
JANUARY 2005, Vol. 127 Õ 45
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Fig. 5 Cavity shapes for various body radii „dimensionless body length: 40;
dimensionless cavity length: 30 …
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At least from a numerical perspective, limitations also apply
the minimum cavity length for a given body radius. Figure
shows the minimum cavity length for which convergence w
achieved as a function of the body radius. When the current an
sis was applied to flow cases with shorter cavities than this m
mum value, nonphysical cavity shapes resulted, characterize
nonconvex profiles. It can be seen that this minimum cavity len
increases with increasing body radius.

Figure 9~a! presents the cavitation number versus the cav
length for different body radii. The dimensionless body length
again 40. Except for the case of supercavitation~a body radius of
zero!, the cavity closes on the cylindrical portion of the body. T
cavitation number decreases with increasing body radius. As
cavity length increases, each curve asymptotically approache
supercavitation result, which agrees well with the low-cavitatio
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number limits of two formulas presented in May@23#. One of
these is May’s own semiempirical formula, and the other is Ga
bedian’s theoretical formula@22#. A dimensionless body radius o
0.5 is the case where the cavitator and cylinder diameters are
same, the so-called ‘‘zero-caliber ogive’’ for which partial cavit
tion experiments were performed by Billet and Weir@24#. Figure
9~b! presents the cavity length versus cavitation number for
case for the current method~labeled ‘‘0.5’’!, for the curve fit rec-
ommended in@24# for their experimental results:

,c

dc
5S 0.751

s D 1/0.75

and for the semiempirical formula for supercavitation reco
mended in May@23#. It can be seen that, although the curre
Fig. 6 Riabouchinski wall height versus „a… body radius and „b… cavity length
„dimensionless body length: 40 …
Transactions of the ASME
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Fig. 7 Maximum body radius „resolved in increments of 0.1 … for nonnegative Riabouchinski
wall height as a function of cavity length
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results fall between the two sets of experimental data, the tren
somewhat closer to the partially cavitating case, suggesting
part of the difference between the data sets presented in@23# and
in @24# can be explained by the presence of the body in the la
case. Other differences may be attributable to any differenc
body length between the flow case associated with Fig. 9~b! and
the actual model length of Billet and Weir~1975!, which is not
stated in their publication. Also, the physical flow conditions
the model base and the presence of a strut and tunnel walls ar
accounted for in the current model. Although the presence o
body will be less important for cylinders of the smaller radii, it
suggested that the current method could be used to correct ex
mental supercavitation data for the presence of a downstr
sting.
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It is often useful to have available a simple approximate f
mula relating cavity length to cavitation number. For the case
supercavitation, many such formulas are available, notably G
bedian’s theoretical formula@22# and May’s semiempirical for-
mula @23# shown in Figs. 3 and 9. Such a formula is proposed
the Appendix for the case of a partial cavity terminating on t
cylindrical portion of the body.

Cavity Closure on the Conical Forebody. The pressure dis-
tribution for closure on the conical forebody of a selected confi
ration was discussed above in connection with Fig. 4. Figure
presents the effect of the body radius if the cavity closes on
conical portion of the body. It can be seen that a much lon
cavity is generated for supercavitation than for the partially ca
Fig. 8 Minimum cavity length for which convergence was achieved versus
body radius „dimensionless body length: 40 …
JANUARY 2005, Vol. 127 Õ 47
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Fig. 9 Cavity length versus cavitation number „a… for bodies of different radii
„dimensionless body length: 40 …; „b… comparison with the zero-caliber ogive
experiments of Billet and Weir „1975…
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tating case at the same cavitation number. For a constant ca
tion number, the cavity length decreases slightly with increas
body radius, especially at lower cavitation numbers. The se
empirical results from May@23# are also presented in the figur
for purposes of comparison with the case of supercavitation.

In Fig. 11~a!, the cavitation number versus the cavity length
plotted for three different cone angles: 4.77 deg, 9.55 deg,
15.92 deg. The dimensionless axial coordinates of the co
cylinder intersection for each of these bodies are 8.38, 4.16,
2.46, respectively. The body length is 80 and the cavity closes
either the conical or the cylindrical portion of the body. For co
angles of 4.77 deg and 9.55 deg, a continuous curve is obta
But for 15.92 deg, the curve is discontinuous for values of
cavity length between approximately 2 and 6.

This can be explained by referring to Fig. 12, where the cav
shapes for different cavitation numbers are shown for this c
angle. The cavity shapes for cavity lengths 4 and 5, even tho
they are shown in the figure, intersect the body and so are
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physically realizable. Hence a jump in the cavity length is
quired at this point. For the other two cone angles shown in F
11, the cone–cylinder intersection is further downstream, so
cavity is large enough to envelope that point as the cavity len
increases continuously with a decrease in the cavitation num
thus continuous curves result. Note, however, the very appa
change in the slopes of the curves, even for the 9.55 deg c
angle, as the cavity closure point moves from the cone to
cylinder in each case. This effect is emphasized in Fig. 11~b!,
where the reciprocal of the cavitation number is plotted ver
cavity length for each of the body profiles. This figure clea
shows either discontinuous or slope-discontinuous behavior w
the cavity closes at the cone–cylinder intersection, depending
the cone angle.

Although the current analysis does not address ventilation
fects, such behavior may be related to the hysteresis effect
cussed in Semenenko@25#. This effect, which was discovered an
investigated experimentally, involves the behavior of nomina
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Fig. 10 Cavity length versus cavitation number for cavity termination on the conical forebody,
comparing partial cavitation with supercavitation „dimensionless body length: 80; cone angle:
6.96 deg …
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axisymmetric ventilated cavities that close on an axisymme
body profile with slope discontinuities. Specifically, Semenen
claims that the ventilation rate required to maintain a cavity o
given length depends on the angle that the cavity boundary m
with the body profile near closure. Since this quantity depends
turn, on the slope of the profile and the cavity length, a slo
s Engineering
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ko
f a
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discontinuous profile is associated with discontinuities in the
lationship between the required ventilation rate and the ca
length. Figures 11 and 12 herein provide qualitative evidence
similar dependence on the angle that the cavity boundary ma
with the body profile near closure. This result suggests that
effect discussed in@25# involves the relationship between the cav
Fig. 11 Cavity length versus „a… cavitation number and „b… reciprocal of cavi-
tation number for three different cone angles „dimensionless body length: 80;
dimensionless body radius: 1.2 …
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Fig. 12 Numerical analysis of high-speed bodies in partially cavitating flow
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tation number and the cavity length directly, although it is cle
that the required ventilation rate must also be affected. Appl
tion of the current model to the body profiles discussed by Se
nenko for purposes of a more direct comparison was beyond
scope of this effort.

Drag coefficients for bodies with cone angles of 9.55 deg a
15.92 deg are plotted in Figs. 13 and 14, respectively, bro
down into the components described above. For these exampl
was assumed that the flow at the cylinder base was separ
rather than cavitating, and the base drag component was comp
using Eq.~5!. The pressure drag in Fig. 13 decreases as the ca
closure point approaches the cone–cylinder intersection and
increases slowly as the cavity length increases. This behavio
reflected in the total drag, since the pressure drag is a signifi
component, and the other components change only slowly w
changes in the cavity length. As is to be expected, the viscous
decreases with increasing cavity length while the base drag
JANUARY 2005
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creases. Note that all these computations were performed f
single, arbitrarily selected value of the Reynolds number.

In Fig. 14, the drag associated with the nonphysical soluti
for values of the cavity length between 2 and 6 is not show
although the pressure and total drag coefficients show a tend
toward reduced values just outside this range, so that the qua
tive behavior is similar to that described in Fig. 13.

The local minimum in the forebody pressure drag coefficient
the cavity closure point approaches the cone–cylinder intersec
represents two primary competing effects:~1! A decrease in the
length of the conical forebody that is exposed to elevated p
sures downstream of the cavity closure point; and,~2! the increase
in cavity pressure relative to ambient as the cavitation num
increases, which results in increased drag on the forebody. It
be seen from Fig. 4 that the fraction of the forebody length tha
exposed to pressures higher than static pressure is reduce
more of the cone is enveloped by the cavity. Once the ca
Fig. 13 Drag coefficient versus cavity length „dimensionless body length: 80;
dimensionless body radius: 1.2; cone angle: 9.55 deg; Reynolds number:
3.0e7…
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Fig. 14 Drag coefficient versus cavity length „dimensionless body length: 80;
dimensionless body radius: 1.2; cone angle: 15.92 deg; Reynolds number:
3.0e7…
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closure point reaches the cone–cylinder intersection, no fur
decrease can occur, since the cone is completely enveloped
minimum pressure drag should, therefore, be observed when
cavity and cone lengths are equal; the cavity increments use
produce the curves in Fig. 13 were not quite sufficient to reso
the pressure minimum exactly, although the basic behavior is
tured. The dip in the total drag coefficient as the cavity clos
point approaches the cone–cylinder intersection does not re
the drag to values associated with supercavitation. In that c
there is no base drag as currently defined, friction drag is ne
gible, and the total drag is simply the cavitator drag for a disk,
that the total drag coefficient based on cavitator projected a
takes a value approaching 0.82–0.84~see, for example, May@23#,
Kirschner et al.@13#, Uhlman et al.@14#, and many others!.

Figures 15 and 16 show the effects of body radius when
cavity closes on the conical portion of the body at constant va
of the cavitation number. Once again, the base drag was comp
using Eq.~5!, assuming that the flow is base-separated, rather
base-cavitating. For this example, the cavitation number was fi
at 0.15, the dimensionless body length was 80, and the cone a
was 15.92 deg. As for the case of cavity closure on the cylinde
can be seen in Fig. 15 that the cavity length decreases with
creasing body radius. Figure 16 shows that all the drag com
nents except the pressure drag increase with increasing bod
dius over the range considered. The increase in friction drag is
to the increase in the ratio of wet area to cavitator area. Simila
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the increase in base drag is associated with the increase in
ratio of base area to cavitator area. The forebody pressure
varies under the influence of two primary competing effects:~1!
The increase in the wet area of the conical forebody that is
posed to elevated pressures downstream of the cavity clo
point; and,~2! the increase in the wet area of the conical forebo
exposed to the low-pressure spike near the cone–cylinder in
section. At this cavitation number, with the cavity enveloping
fraction of the cone, the first effect leads to a slight increase in
pressure drag coefficient until a dimensionless body radius of
proximately 1.8, at which point the effect of the low-pressu
spike begins to dominate and the pressure decreases.

The Effect on Drag of Flow Conditions at the Cylinder Base
As discussed above, the base and total drag coefficients depe
the type of flow occurring at the base of the cylinder: Bas
separated flow, in which case the base drag is computed using
~5!, or the base-cavitating flow, for which Eq.~6! applies. In re-
ality, the base drag coefficient can fall somewhere between th
two values, depending on the extent of cavitation over the cy
der base. Thus, the base-separated and base-cavitating flow
represent limiting values that are useful for the purposes of e
mating the total drag on a partially cavitating body.

As an illustration of this behavior, the base and total drag
efficients were predicted for a partially cavitating body with
dimensionless length of 40 and a dimensionless cylinder radiu
Fig. 15 Cavity shapes for different maximum dimensionless body radii „di-
mensionless body length: 80; cavitation number: 0.15; cone angle: 15.92 deg …
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Fig. 16 Dimensionless cavity length and drag components versus dimensionless body radius
„dimensionless body length: 80; cavitation number: 0.1; cone angle: 15.92 deg …
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0.9, subject to base-separated and base-cavitating flow. For
of these two cases, it was assumed that the forward cavity clo
on the cylindrical portion of the body. For the case of the ba
cavitating flow, it was assumed that cavity pressure at the base
at the cavitator were equal. The results are presented in Fig.

It can be seen that as the cavitation number decreases
increasing cavity length, the base drag coefficient for the ba
cavitating flow case also decreases in accordance with Eq.~6!.
Assuming that the semiempirical formula, Eq.~5!, is applicable, a
generally opposite trend applies to the base-separated flow
These trends are reflected in the total drag coefficients. It is
apparent from Fig. 17 that the total drag coefficient is very dep
dent on the base flow conditions. Therefore, in applying th
results, several cautions must be noted, as follows:

As discussed above, the pressure in the fluid cannot fall be
vapor pressure. Thus, the base drag coefficient cannot achie
value higher than the value computed for the case of the b
cavitating flow with the cavity pressure equal to vapor pressu
Thus for the example results presented in Fig. 17, the base
coefficient for the base-separated flow case is nonphysical fo
mensionless cavity lengths greater than approximately 13.6.
longer cavities, cavitation would begin to occur over the base,
the base drag coefficient would begin to depart from the cu
JANUARY 2005
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for base separation shown in Fig. 17, and eventually follow
curve for base cavitation as the base flow became fully cavita
The total drag coefficient is similarly limited.

If the cavities at the cavitator and at the base are sub
to unequal values of cavity pressure, as can occur for a ve
ated system, results such as those presented in Fig. 17 mu
modified.

The results for the base-separated flow case are presented
engineering approximation based on a semiempirical formula
the drag coefficient. This formula is a rather simplified express
that does not involve body length as a parameter, nor doe
account for the occurrence of cavitation. Such complications w
rant additional modeling and experimental validation to impro
predictions such as those presented in Fig. 17.

Conclusions
A physics-based model of partial cavitation has been develo

for axisymmetric flows. The model has been applied to a d
cavitator with a simple body profile consisting of a conical for
body abutting a cylinder. The effects of the body radius and fo
body cone angle on the cavity shape and length, the cavita
number, and the body drag were studied. The model predicts
Fig. 17 Base and total drag coefficients versus cavity length „dimensionless
body length: 40; dimensionless body radius: 0.9; Reynolds number: 3.0e7 …

comparing the base-separated and base-cavitating flow cases
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Fig. 18 Bivariate surface fit of cavity length as a function of cavitation number and cylinder
radius „results strictly applicable to a dimensionless body length of 40; computed using Eq.
„7…; original numerical data plotted as markers …
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for fixed cavitation number, partial cavities are generally sho
than supercavities for the same cavitation number over the reg
investigated. The model also predicts that, for a given cavita
number, cavity length decreases and drag increases with a
crease in the body radius over most of the parameter space in
tigated. A dip in the pressure drag coefficient occurs as the c
tation number decreases and the cavity termination p
approaches the cone–cylinder intersection. However, discon
ous cavity behavior can also occur at such an operating po
depending on the forebody cone angle. It is proposed that
effect is related to experimental observations of other researc
involving ventilation hysteresis effects.
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Nomenclature

Ac 5 cavitator projected area
b(x) 5 body-cavity radius at axial locationx
bbase 5 radius of cylindrical portion of body

bi j 5 coefficients used in surface fit of computed results
CD 5 total drag coefficient,D/ 1

2 rU`
2Ac

CDb 5 base~pressure! drag coefficient,Db/
1
2 rU`

2Ac

CDc 5 cavitator drag coefficient for a supercavity,

Dc/
1
2 rU`

2Ac

CDp 5 pressure drag coefficient,Dp/
1
2 rU`

2Ac

CDv 5 viscous drag coefficient,Dv/
1
2 rU`

2Ac

Cf 5 friction coefficient,tw/ 1
2 rU`

2

Cp 5 pressure coefficient, (p2p`)/ 1
2 rU`

2

s Engineering
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D 5 total drag on the body
Db 5 base drag at the aft end of the body
Dc 5 cavitator drag for a supercavity
Dp 5 pressure drag on the body excluding base drag com

ponent
Dv 5 viscous drag on the body
dc 5 cavitator diameter
,b 5 body length
,c 5 cavity length

, i(b) 5 coefficients used in surface fit of computed results
pc 5 cavity pressure at cavitator

pc base 5 cavity pressure at cylinder base, for base-cavitating
flows

p` 5 free-stream ambient pressure
q 5 magnitude of local fluid velocity vector
s 5 arc length coordinate along body-cavity surface

U` 5 free-stream velocity
x 5 axial distance
r 5 density of water
s 5 cavitation number, (p`2pc)/

1
2 rU`

2, based on cavity
pressure at cavitator

sbase 5 cavitation number, (p`2pc base)/
1
2 rU`

2, based on cav-
ity pressure at cylinder base

F 5 total potential
f 5 disturbance potential

Appendix: Parametric Surface Fit of Partial Cavity
Characteristics

It is often useful to have available a simple approximate f
mula relating the cavity length to the cavitation number. For
case of partial cavitation over a cylindrical body of dimensionle
length of 40, the following surface is proposed, based on curve
of the numerical results presented above

ln~s~,c ,b!!5,1~b!ln2~,c!1,2~b!ln~,c!1,3~b! (A-1)
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whereb is the cylinder radius

, i~b!5bi1b21bi2b1bi3

and

bi j 5F 20.0648 0.5201 21.0961

20.0003 20.0210 0.0899

20.0069 20.8140 20.0031
G

The minimum cavity length for which the formula is applicable
given as a polynomial regression to the results presented in Fig

ln~,c min!522.0717 ln2~b!12.4282 ln~b!11.0842 (A-2)

The original data computed using the boundary-element metho
compared in Fig. 18 with the associated family of curves gen
ated using Eq.~A-1!. It can be seen that the surface fit is qu
satisfactory for values of the cavity length greater than the m
mum defined by Eq.~A-2!.
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